• <em id="6vhwh"><rt id="6vhwh"></rt></em>

    <style id="6vhwh"></style>

    <style id="6vhwh"></style>
    1. <style id="6vhwh"></style>
        <sub id="6vhwh"><p id="6vhwh"></p></sub>
        <p id="6vhwh"></p>
          1. 国产亚洲欧洲av综合一区二区三区 ,色爱综合另类图片av,亚洲av免费成人在线,久久热在线视频精品视频,成在人线av无码免费,国产精品一区二区久久毛片,亚洲精品成人片在线观看精品字幕 ,久久亚洲精品成人av秋霞

            多肽固相合成(多肽固相合成儀)

            更新時間:2023-03-01 05:41:22 閱讀: 評論:0

            多肽固相合成法的發明

            多肽固相合成方法:Boc多肽合成法和Fmoc多肽合成法

            多肽的合成是氨基酸重復添加的過程,通常從C端向N端(氨基端)進行合成。多肽固相合成的原理是將目的肽的第一個氨基酸C端通過共價鍵與固相載體連接,再以該氨基酸N端為合成起點,經過脫去氨基保護基和過量的已活化的第二個氨基酸進行反應,接長肽鏈,重復操作,達到理想的合成肽鏈長度,最后將肽鏈從樹脂上裂解下來,分離純化,獲得目標多肽。

            1、Boc多肽合成法

            Boc方法是經典的多肽固相合成法,以Boc作為氨基酸α-氨基的保護基,芐醇類作為側鏈保護基,Boc的脫除通常采用三氟乙酸(TFA)進行。多肽合成時將已用Boc保護好的N-α-氨基酸共價交聯到樹脂上,TFA切除Boc保護基,N端用弱堿中和。

            肽鏈的延長通過二環己基碳二亞胺(DCC)活化、偶聯進行,最終采用強酸氫氟酸(HF)法或三氟甲磺酸(TFMSA)將合成的目標多肽從樹脂上解離。在Boc多肽合成法中,為了便于下一步的多肽合成,反復用酸進行脫保護,一些副反應被帶入實驗中,例如多肽容易從樹脂上切除下來,氨基酸側鏈在酸性條件不穩定等。

            2、Fmoc多肽合成法

            Carpino和Han以Boc多肽合成法為基礎發展起來一種多肽固相合成的新方法——Fmoc多肽合成法。

            Fmoc多肽合成法以Fmoc作為氨基酸α-氨基的保護基。其優勢為在酸性條件下是穩定的,不受TFA等試劑的影響,應用溫和的堿處理可脫保護,所以側鏈可用易于酸脫除的Boc保護基進行保護。

            肽段的最后切除可采用TFA/二氯甲烷(DCM)從樹脂上定量完成,避免了采用強酸。同時,與Boc法相比,Fmoc法反應條件溫和,副反應少,產率高,并且Fmoc基團本身具有特征性紫外吸收,易于監測控制反應的進行。Fmoc法在多肽固相合成領域應用越來越廣泛。


            多肽合成的基本原理?

            現如今多肽合成的辦法首要有兩種:即 Fmoc 和 t Boc 。因為 Fmoc 比 tBoc 具有更多的優勢,所以讓大家比較認可的是 Fmoc 法。而多肽合成是一個重復添加氨基酸的進程,合成方向是從 C 端(羧基端)向 N 端(氨基端)進行;從前多肽合成大多是在液相中進行,而如今大多選用固相合成,然后大大的降低了每步商品提純的難度;為了防止副反響的發作,合成柱和添加的氨基酸的側鏈都是預先被維護的,只要羧基端是游離的,并且在反響之前有必要先用化學試劑活化它。

            多肽合成基本原理示意圖

            具體合成過程如下:

            1、去維護:Fmoc 維護的柱子和單體有必要用一種堿性溶劑( piperidine )去除氨基的維護基團。

            2、激活和交聯:下一個氨基酸的羧基被一種激活劑所激活溶解,激活的單體與游離的氨基在交聯劑的作用下交聯,構成肽鍵。

            3 、循環:這兩步反響重復循環直到整條肽鏈合成結束。
            4 、洗脫和脫維護:依據肽鏈所含的殘基不一樣,用不一樣的脫樹脂溶劑從柱上洗脫下來,其維護基團被一種脫維護劑( TFA )洗脫和脫維護。
            多肽是復雜的大分子,因而每條序列在物理和化學特性上都是共同的,有些多肽合成很艱難 ,另有些多肽雖然合成相對簡單,但純化艱難;最常見的疑問是很多肽不溶于水溶液,因而在純化中,這些疏水肽有必要溶于非水溶劑中或特別的緩沖液,而這些溶劑或緩沖液很也許不適合應用于生物試驗體系,因而研究人員不能運用該多肽到達自個的意圖,因而下面是關于研究人員規劃多肽的一些建議。

            怎么下降肽鏈合成的難度?

            1. 削減序列長度
            因為肽的長度添加會致使粗產品純度下降,小于15個殘基的肽對比簡單得到較高純度的初產品,當肽鏈長度添加到20個殘基以上時,準確產品的量即是一個首要思考的疑問。在很多試驗中,下降殘基數低于20 往往能得到非常好的試驗成果。
            2. 削減疏水性殘基數
            疏水性殘基占顯著優勢的肽,尤其在距C端7-12個殘基的區域,常常導致合成艱難。這一般被認為是因為合成中構成b折疊片,這么會發生不完全配對。用1個或幾個極性殘基置換 或參加Gly或Pro以翻開肽構造也許會有協助。
            3. 削減“艱難”殘基

            多肽合成方法有哪些

            多肽合成方法:

            酰基疊氮物法

            早在1902年,TheodorCurtius就將酰基疊氮物法引入到肽化學中,因此它是最古老的縮合方法之一。在堿性水溶液中,除了與酰基疊氨縮合的游離氨基酸和肽以外,氨基酸酯可用于有機溶劑中。與其他許多縮合方法不同的是,它不需要增加輔助堿或另一等當量的氨基組分來捕獲腙酸。

            長期以來,一直認為疊氮物法是唯一不發生消旋的縮合方法,隨著可選擇性裂解的氨基酸保護基引入,該方法經歷了一次大規模的復興。該方法的起始原料分別是晶體狀的氨基酸酰肼或肽酰肼64,通過肼解相應的酯很容易得到。在-10℃的鹽酸中,用等當量的亞硝酸鈉使酰肼發生亞硝化而轉化為疊氮化物65,依次洗滌、干燥,然后與相應的氨基組分反應。有些疊氮化物可用冰水稀釋而沉淀出來。 二苯磷酰基疊氮化物(DPPA)也可以用于酰基疊氮化物的合成。Honzl-Rudinger方法采用亞硝酸叔丁作為亞硝化試劑,并且使疊氮縮合反應可在有機溶劑中進行。因酰基疊氮化物的熱不穩定性,縮合反應需在低溫下進行。當溫度較高時,Curtius重排,即酰基疊氮轉化為異氰酸酯的反應成為一個主要的副反應,最終導致生成副產物脲。由于反應溫度低(如4℃)而導致反應速率相當慢,使得肽縮合反應通常需要幾天才能完全。 對于較長的N端保護的肽鏈,酯基的肼解一般比較困難,因此,使用正交的N保護肼衍生物是一種選擇。在肼基的選擇性脫除后,按倒接(backing-off)策略組合的肽片段可以用于疊氮縮合。

            如前所述,雖然疊氮法一直被認為是消旋化傾向最小的縮合方法,但在反應中,過量的堿會誘發相當大的消旋。因此,在縮合反應期間要避免與堿接觸,例如,氨基組分的銨鹽應采用N,N-二異丙胺或N-烷基嗎啉代替三乙胺來中和。

            雖然有上述局限性,但該方法仍很重要,尤其對于片段縮合而言,因為該方法具有較低的異構化傾向,適用于羥基未保護絲氨酸或蘇氨酸組分時,Nˊ保護的本行酰肼還具有多種用途。

            酸酐法

            在多肽合成中,最初考慮應用酸酐要追溯到1881年TheodorCurtius對苯甲酰基氨基乙酸合成的早期研究。從氨基乙酸銀與苯甲酰氯的反應中,除獲得苯甲酰氨基乙酸外,還得到了BZ-Glyn-OH(n=2-6)。早期曾認為,當用苯甲酰氯處理時,N-苯甲酰基氨基酸或N-苯甲酰基肽與苯甲酸形成了活性中間體不對稱酸酐。 大約在70年后,TheodorWieland利用這些發現將混合酸酐法用于現代多肽合成。目前,除該方法外,對稱酸酐以及由氨基酸的羧基和氨基甲酸在分子內形成的N-羧基內酸酐(NCA,Leuchsanhydrides)也用肽縮合。最后應該提到,不對稱酸酐常常參與生化反應中的酰化反應。

            混合酸酐法

            有機羧酸和無機酸皆可用于混合酸酐的形成。然而,僅有幾個得到了廣泛的實際應用,多數情況下,采用氯甲酸烷基酯。過去頻繁使用的氯甲酸乙酯,目前主要被氯甲酸異丁酯所替代。

            由羧基組分和氯甲酸酯起始形成的混合酸酐,其氨解反應的區域選擇性依賴依賴于兩個互相競爭的羰基的親電性和(或)空間位阻。在由N保護的氨基酸羧酸鹽(羧基組分)和氯甲酸烷基酯(活化組分,例如源于氯甲酸烷基酯)形成混合酸酐時,親核試劑胺主要進攻氨基酸組分的羧基,形成預期的肽衍生物,并且釋放出游離酸形式的活性成分。當應用氯甲酸烷基酯(R1=異丁基、乙基等)時,游離的單烷基碳酸不穩定,立即分解為二氧化碳和相應的醇。然而,對于親核進攻的區域選擇性,也有一些相反的報道,產物為氨基甲酸酯和原來的N保護氨基酸組分。 為了形成混合酸酐,將N保護的氨基酸或肽分別溶于二氯甲烷、四氫呋喃、二氧六環、乙腈、乙酸乙酯或DMF中,用等當量的三級堿(N-甲基哌啶、N-甲基嗎啉、N-乙基嗎啉等)處理。然后,在-15℃--5℃,劇烈攪拌的同時加入氯甲酸烷基酯以形成不對稱酸酐(活化)。經短時間活化后,加入親核性氨基酸組分。如果作為銨鹽使用(需要更多的堿),必須避免堿的過量使用。如果嚴格按照以上的反應條件,混合酸酐法很容易進行,是最有效的縮合方法之一。

            對稱酸酐法

            Nα-酰基氨基酸的對稱酸酐是用于肽鍵形成的高活性中間體。與混合酸酐法相反,它與胺親核試劑的反應沒有模棱兩可的區域選擇性。但肽縮合產率最高,為50%(以羧基組分計)。

            雖然由對稱酸酐氨解形成的游離Nα-酰基氨基酸可以和目標肽一起,通過飽和碳酸氫鈉溶液萃取回收,但在最初,這種方法的實用價值極低。對稱酸酐可以用Nα-保護氨基酸與光氣,或方便的碳二亞胺反應制得。兩當量的Nα-保護氨基酸與-當量的碳二亞胺反應有利于對稱酸酐的形成,對稱酸酐可以分離出來,也可不經純化而直接用于后面的縮合反應。基于Nα-烷氧羰基氨基酸的對稱酸酐對水解穩定,可采用類似上述純化混合酸酐的方法進行純化。

            由于Boc-保護氨基酸的商品化和合理的價格,在肽鏈的逐步延長中,使用對稱酸酐法日益受到重視。雖然可以買到晶狀的對稱酸酐,但原位制備仍然是一種不錯的選擇。

            碳二亞胺法

            碳二亞胺類化合物可用于氨基和羧基的縮合。在該類化合物中N,Nˊ-二環己基碳二亞胺(DCC)相對便宜,而且可溶于肽合成常用的溶劑。在肽鍵形成期間,碳二亞胺轉變為相應的脲衍生物,N,Nˊ-二環己基脲可以從反應液中沉淀出來。顯然,碳二亞胺活化后的活性中間體氨解和水解速率不同,使肽合成能在含水介質進行。經幾個課題組的大量研究,確立了以碳二亞胺為縮合劑的肽縮合反應機理,羧酸根離子加成到質子化的碳二亞胺,形成高活性的O-酰基脲;雖然還沒有分離出這個中間體,但通過非常類似的穩定化合物推斷了它的存在。O-酰基脲與氨基組分反應,產生被保護的肽和脲衍生物。或者,與質子化形式處于處于平衡狀態的O-酰基異脲,被第二個羧酸酯親核進攻,產生對稱的氨基酸酐和N,Nˊ-二取代脲。前者與氨基酸反應得到肽衍生物和游離氨基酸。在堿催化下,使用DCC的副反應使酰基從異脲氧原子向氮原子轉移,產生N-酰基脲71,它不再發生進一步的氨解。不僅過量的堿可催化O-N的酰基轉移,而且堿性的氨基組分或碳二亞胺也可催化該副反應。

            另外,極性溶劑有利于這一反應途徑。


            多肽合成的基本原理?

            多肽固相合成法是多肽合成化學的一個重大的突破。它的最大特點是不必純化中間產物,合成過程可以連續進行,進而為多肽合成的自動化奠定了基礎。目前全自動多肽的合成,基本都是固相合成。其基本過程如下:
            基于Fmoc化學合成,先將所要合成的目標多肽的C-端氨基酸的羧基以共價鍵形式與一個不溶性的高分子樹脂相連,然后以這一氨基酸的氨基作為多肽合成的起點,同其它的氨基酸已經活化的羧基作用形成肽鍵,不斷重復這一過程,即可得到多肽。根據多肽的氨基酸組成不同,多肽后處理方式不同,純化方式也有差異。

            多肽固相合成法的介紹

            雖然Merrifield在發明固相多肽合成科學并取得巨大成功的同時,使用了自主研發的合成設備,但卻沒因此將多肽合成儀引入市場。1970年,Beckman公司開發的全自動多肽合成儀Beckman 990 Peptide Synthesizer 作為第一臺投入市場的科研用多肽合成儀,被美國多所大學的實驗室采用。
            幾乎同一時間,Vega Biotechnologies, Inc.公司開發出兩款經濟型多肽合成儀:Vega’s Coupler 1000與Vega’s Coupler 250 (不久又推出Vega’s Coupler 296),其將多肽合成后續的在線切割理念結合到設備中,所有反應器采用防爆玻璃材質,防止TFA的腐蝕。被當時的肽化學界稱為最經濟適用的多肽合成儀。
            而今,Beckman與Vega’s兩家公司均停止的多肽合成儀的研發與制造,而轉向到更多面的化學合成、分離、檢測技術設備的研制產業中。 第一代多肽合成儀是以Beckman公司推出的Beckman 990 Peptide Synthesizer以及Vega’s Biotechnologies公司推出的Vega’s 296 Peptide Synthesizer為代表的,誕生在上世紀七十年代。
            雖然隨著生產工藝的改進和發展,如今第一代多肽合成儀已全部退出了市場。但1990年以前的眾多肽化學文獻都是在此實驗設備上運行研發而來,第一代的多肽合成儀為之后的合成儀研發與制造產生了重大意義。
            第二代多肽合成儀是以Protein Technologies公司推出的PS3 Peptide Synthesizer以及Advanced ChemTech公司推出的ACT peptide synthesizer Model 90為代表的,誕生在上世紀八十年代。此兩款設備也是目前市場上仍在銷售的最早的多肽合成儀。
            PS3 的設計原理是采用氮氣鼓泡的反應方式來對反應物進行攪拌,即合成儀上反應器是固定的,氮氣從反應器的下方通過反應器到上部排出,在這一過程中產生的汽泡把固相和液相混合起來。這樣設計的好處是結構簡單,成本低,但反應相對溫和:1)有時候多肽-固相載體在靜電作用下會“抱團”,使其不能與液相充分混合,在這種情況下需要調高氮氣的壓力以消除靜電作用;而在靜電作用消除后要把壓力立刻調低,不然的話較高的壓力會把多肽-固相載體“吹”到反應器液面上方。由于多肽-固相載體具有較強的粘壁性,一旦被粘到反應器液面上方就再也無法下來,也就是無法再參加反應。顯然第一代機器是無法自動作這樣的壓力調整的,這就是造成反應“死角”的重要原因。反應死角會降低多肽合成的效率和多肽的純度,有的甚至造成合成的失敗。2)長時間氮氣鼓泡會使溶液揮發,液面降低后一部分多肽-固相載體就粘在液面上方,也無法再參加反應。3)氮氣消耗量大,運行成本增大。
            ACT90的設計原理是反應器在直立下圍繞原點作左右擺動,或者圓周運動。ACT的多肽合成儀同樣具有反應溫和的特點,即轉動角度與速度都不能夠完全達到氨基酸耦合的極限,反應往往需要更長的時間。
            第三代多肽合成儀是以Applied Biosystems公司的ABI 433 peptide synthesizer 與C S Bio公司的CS336為代表的無死角多肽合成儀為代表的,誕生在上世紀九十年代。
            ABI433的設計原理是反應器上方相對固定,而下方作圓周360度快速旋轉,帶動反應器里的固液兩相從底部向上作螺旋運動,一直達到反應器的最上方。換句話說,溶液可以達到反應器內部的任意點,真正做到了無死角。由于攪拌速率可達每分鐘1800轉的高速,反應得以充分完全。由于無死角的攪拌方式保證的肽的合成純度,ABI433型多肽合成儀(其退出多肽合成儀市場后最后一款儀器)至今在世界上還占有著很大的比例。當然,ABI產品的售價也是最高的。由于部件使用頻率高,電磁閥會經常損壞,而ABI將7個電磁閥做成模塊化的設計,壞掉一個電磁閥必須要更換整個模塊,無形中增加了維修成本。
            CS336的設計原理是反應器中點為圓心,上下做180度旋轉攪拌,攪拌速度可達180rpm,同時其采用了氮氣鼓泡反應方式的優越性,將氮氣吹動作為可選反應方式融入反應方法中,多肽合成儀在科研領域的高耦合率效果得到充分體現。 進入二十世紀以來,各大合成儀制造公司相繼推出了升級產品和新產品,如Protein Technologies公司推出Tribute雙通道多肽合成儀,將“短信通知”功能融入產品,增添了用戶與設備之間的緊密感,更加人性化;C S Bio公司對其從研發型到生產型設備的UV Online Monitor系統配置統一升級,用戶可直觀看到每一部氨基酸偶聯反應的狀態并可根據數據調整出最佳合成效果與工藝;Advanced ChemTech公司自2005年破產重組后分裂為兩家新公司,其中Aapptec延續了其前身的生產步驟,推出Focus XC三通道合成儀。美國另一家公司CEM以蛋白質有機反應設備的制造著稱,推出了微波多肽合成儀同樣可以合成簡單的小分子多肽。其采用微波加熱方式,大大提高了反應速度,將反應的速率增加到之前多肽合成儀的幾倍甚至十幾倍。


            多肽固相合成法的誕生

            多肽合成研究已經走過了一百多年的光輝歷程。1902年,Emil Fischer首先開始關注多肽合成,由于當時在多肽合成方面的知識太少,進展也相當緩慢,直到1932年,Max Bergmann等人開始使用芐氧羰基(Z)來保護α-氨基,多肽合成才開始有了一定的發展。
            到了20世紀50年代,有機化學家們合成了大量的生物活性多肽,包括催產素,胰島素等,同時在多肽合成方法以及氨基酸保護基上面也取得了不少成績,這為后來的固相合成方法的出現提供了實驗和理論基礎。
            1963年,Merrifield首次提出了固相多肽合成方法(SPPS),這個在多肽化學上具有里程碑意義的合成方法,一出現就由于其合成方便,迅速,成為多肽合成的首選方法,而且帶來了多肽有機合成上的一次革命,并成為了一支獨立的學科——固相有機合成(SPOS)。因此,Merrifield榮獲了1984年的諾貝爾化學獎。Merrifield經過了反復的篩選,最終摒棄了芐氧羰基(Z)在固相上的使用,首先將叔丁氧羰基(BOC)用于保護α-氨基并在固相多肽合成上使用,同時,Merrifield在60年代末發明了第一臺多肽合成儀,并首次合成生物蛋白酶,核糖核酸酶(124個氨基酸)。
            1972年,Lou Carpino首先將9-芴甲氧羰基(FMOC)用于保護α-氨基,其在堿性條件下可以迅速脫除,10min就可以反應完全,而且由于其反應條件溫和,迅速得到廣泛使用,以BOC和FMOC這兩種方法為基礎的各種肽自動合成儀也相繼出現和發展,并仍在不斷得到改造和完善。同時,固相合成樹脂,多肽縮合試劑以及氨基酸保護基,包括合成環肽的氨基酸正交保護上也取得了豐碩的成果。


            本文發布于:2023-02-28 19:33:00,感謝您對本站的認可!

            本文鏈接:http://m.newhan.cn/zhishi/a/167762048262538.html

            版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。

            本文word下載地址:多肽固相合成(多肽固相合成儀).doc

            本文 PDF 下載地址:多肽固相合成(多肽固相合成儀).pdf

            標簽:多肽
            相關文章
            留言與評論(共有 0 條評論)
               
            驗證碼:
            Copyright ?2019-2022 Comsenz Inc.Powered by ? 實用文體寫作網旗下知識大全大全欄目是一個全百科類寶庫! 優秀范文|法律文書|專利查詢|
            主站蜘蛛池模板: 国产精品SM捆绑调教视频| 午夜射精日本三级| 亚洲av午夜福利精品一区二区| 亚洲欧美日韩综合一区在线| 欧美午夜成人片在线观看| 无码色AV一二区在线播放| 国产av综合一区二区三区| 亚洲日韩中文字幕在线播放| 亚洲精品久久久久国色天香| 免费人成网站视频在线观看 | 亚洲国产午夜精品福利| 亚洲av与日韩av在线| 亚洲中文日韩一区二区三区| 在线高清理伦片a| 国产成人综合95精品视频 | 四虎成人在线观看免费| 少妇av一区二区三区无码| 加勒比无码人妻东京热| 开心色怡人综合网站| 2019久久久高清日本道| av网站可以直接看的| 日韩av日韩av在线| 亚洲婷婷丁香| 日韩卡一卡2卡3卡4卡| 精品视频福利| 加勒比无码人妻东京热| 久久91精品牛牛| 国产免费又黄又爽又色毛| AV免费播放一区二区三区| 东京热av无码电影一区二区| 日韩高清亚洲日韩精品一区二区| 自拍自产精品免费在线| 国产午夜精品福利视频| 一级二级三一片内射视频在线| 精品无人区一码二码三码| 一道本AV免费不卡播放| 成人啪啪高潮不断观看| 神马午夜久久精品人妻| 国产成人a在线观看视频| 巨胸不知火舞露双奶头无遮挡| 国产精品沙发午睡系列990531|