無限不循環小數有哪些?
一、無限不循環小數
一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。
二、無限循環小數
一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
三、有限小數
小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
擴展資料
一、純循環小數化為分數:
方法:將純循環小數改寫為分數,分子是一個循環節的數字組成的數。
二、混循環小數化為分數:
方法:將混循環小數改寫為分數,分子就是循環節中小數部分的數字組成的數減去小數部分中不循環部分數字組成的數而得到的差。
參考資料來源:百度百科-無限小數
參考資料來源:百度百科-有限小數
什么叫做無限不循環小數
小數可以分為有限小數和無限小數兩類,而無限小數又分無限循環小數與無限不循環小數兩類。
1、無限循環小數的定義:從小數點后某一位開始不斷地出重復現前一個或一節數碼的十進制無限小數。如2.1666…、35.232323…等,被重復的一個或一節數碼稱為循環節。
無限循環小數的縮寫法是將第一個循環節以后的數碼全部略去,而在保留的循環節首末兩位上方各添一個小點。例如,2.166…縮寫為,(讀作“二點一六,六循環”)。在數的分類中,無限循環小數屬于有理數。
2、無限不循環小數的定義:有些小數雖然也是無限的但不循環。
如值、、2.12459537621……,這樣的小數就被稱為無理數。無理數不像循環小數每個數字是重復的,但也屬于無限小數。
3、有限小數是指小數點后的位數是固定的,例如1.5這種數值。
擴展資料:
實數是由有理數和無理數組成的,整數和分數統稱有理數,它們是有限小數和無限循環小數,而把無限不循環小數叫做無理數。
實數和數軸上的點是一一對應的。也就是說,實數是可以表現任意一條線段的長度,并且同一條線段只有一個長度。
小數的基本性質是:在小數的末尾添上零或去掉零,小數的大小不變。
在測量物體時,往往會得到不是整數的數。于是古人就發明了小數來補充整數。小數是十進分數的一種特殊表現形式。小數中的圓點叫做小數點,它是一個小數的整數部分和小數部分的分界線,小數點左邊的部分是整數部分,小數點右邊的部分則是小數部分。
無限不循環小數有哪些?
一、無限不循環小數
一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。
二、無限循環小數
一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
三、有限小數
小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
小數化分數的方法:
1、看是幾位小數,就在1后面添幾個0做分母。
2、把原來的小數去掉小數點后作分子。
3、能約分的要約分。
帶分數化小數:
1、帶分數的整數部分不變。
2、將帶分數的真分數部分化成小數(分子除以分母)。
3、將兩個部分合并。
無限不循環小數有哪些?
無限不循環小數有3.555 …… 0.0333 …… 12.109109 ……等等。
無理數,也稱為無限不循環小數,不能寫作兩整數之比。若將它寫成小數形式,小數點之后的數字有無限多個,并且不會循環。 常見的無理數有非完全平方數的平方根,π和e其中后兩者均為超越數等。
在數學中,無理數是所有不是有理數字的實數,后者是由整數的比率或分數構成的數字。當兩個線段的長度比是無理數時,線段也被描述為不可比較的,這意味著它們不能測量,即沒有長度。
無理數也可以通過非終止的連續分數來處理。無理數是指實數范圍內不能表示成兩個整數之比的數。簡單的說,無理數就是10進制下的無限不循環小數,如圓周率,等。
而有理數由所有分數,整數組成,總能寫成整數,有限小數或無限循環小數,并且總能寫成兩整數之比,如21/7等。
無限不循環小數是什么數?
無限不循環小數是無理數。
無理數,也稱為無限不循環小數,不能寫作兩整數之比。若將它寫成小數形式,小數點之后的數字有無限多個,并且不會循環。
相關信息:
以看出,無理數在位置數字系統中表示(例如,以十進制數字或任何其他自然基礎表示)不會終止,也不會重復,即不包含數字的子序列。例如,數字π的十進制表示從3.141592653589793開始,但沒有有限數字的數字可以精確地表示π,也不重復。
必須終止或重復的有理數字的十進制擴展的證據不同于終止或重復的十進制擴展必須是有理數的證據,盡管基本而不冗長,但兩種證明都需要一些工作。數學家通常不會把“終止或重復”作為有理數概念的定義。
無限不循環小數表示方法
本文發布于:2023-02-28 19:36:00,感謝您對本站的認可!
本文鏈接:http://m.newhan.cn/zhishi/a/167762346365973.html
版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。
本文word下載地址:無限不循環小數(無限不循環小數是有理數嗎).doc
本文 PDF 下載地址:無限不循環小數(無限不循環小數是有理數嗎).pdf
| 留言與評論(共有 0 條評論) |