chapter1
LINGO是什么?
是最近很火的用來求解線性、非線性規劃的軟件,近年來數學建模等競賽中使用頻率很高,掌握沒壞處的,尤其是數學專業,起碼線代題不用Matlab了~
chapter2
說說界面:
①打開后界面會自動彈出名為“Lingo Model – Lingo 1”的窗口,用于書寫代碼
②在空白處寫完代碼后,點擊紅色的靶心就可以開始運行程序
③運行正確會彈出一個名為“Solution Report”的界面④由此可解變量 x 的數值
chapter3
用 Lingo 解方程:
① 每個方程必須以分號“;”結束。
② 注意Lingo 的所有符號都是英文格式下的符號
③ Lingo 的加減乘除分別是:+ ? ? /
【特別注意】
(1)“2 ? x”在Lingo中不可以簡寫為2x,乘號不能省略。
(2)注意除號“/”的形狀
【eg】求解方程組
2?x+2?y+1=5
3?x?5?y+5=3
【易錯點】
① 不寫結尾的分號。
② 不寫乘號。
chapter4
Lingo 的變量:
①Lingo默認所有變量為大于等于0的數字,因而非負的條件不必多寫。
②萬一遇到一個變量可以小于0,后面會講到一個函數叫做@free,來使其定義域為R。
③Lingo不區分大小寫,所以mmm、mMm、MMM被視作同一個變量。
④無論是C、Matlab還是Lingo,變量均由字母數字下劃線組成,且字母在首位。
【eg】求解方程組:
x2+y2+2*x=103
2*x+y=12
x>0
y>5
線性規劃基礎:
① 一個線性規劃中只含一個目標函數(兩個以上是多目標線性規劃,Lingo 無法直接解)
② 求目標函數的最大值或最小值分別用 max = …或 min = …來表示
③ 以 !開頭,以 ;結束的語句是注釋語句
④ 線性規劃和非線性規劃的本質區別是目標函數是否線性,其余一致,故不需要區分
⑤值得注意的是,非線性規劃的求解十分困難,基本得不到全局最優解。
chapter5
矩陣工廠:
㈠生產一維矩陣:
先來看看例子,當然不必在意其中的空格(Lingo 不讀取空格):
ts:
A /1..6/ : a,b;
B/1..3/ : x,y;
endts
以上程序對應:
①A和B都是制造矩陣的工廠,但它們是兩家不同的工廠
②A工廠后面的 /1…6/ 說明它專門生產1 ? 6的矩陣。B工廠最后面出現的a和b,都是1 ? 6的矩陣
③A工廠后面的 /1…3/ 說明它專門生產1 ? 3的矩陣。B工廠最后面出現的x和y,都是1 ? 3的矩陣
④ 矩陣工廠的名字A是隨便起的,工廠所生產行矩陣的名字a和b也是隨便起的
⑤ 以上這四句話,本質是定義了四個行矩陣的大小,矩陣工廠只是中介
⑥ 生產完矩陣后,工廠和矩陣之間將脫開聯系
⑦ Lingo 不是一行一行讀代碼的,所以用ts:和endts表示矩陣工廠生產流程的起止
【eg】閱讀以下Lingo代碼,請問a和b兩個矩陣有聯系嗎?
ts:
nanfu /1..6/ : a,b;
endts
答:沒有特殊聯系,只是 a 和 b 都是一行六列的矩陣
【eg】閱讀以下Lingo代碼,請問代碼可否簡潔一點?
ts:
ctgu /1..6/ : a;
mcm /1..6/ : b;
endts
答:a,b可以合并,如下:
ts:
easy /1..6/ : a, b;
endts
【eg】閱讀以下Lingo代碼,請問有何問題?
ts:
ceshi /1..6/ : apple, Apple;
endts
答:Lingo 不區分大小寫,所以 apple 和 Apple 是同一個矩陣,應該換個名字
㈡矩陣的賦值
矩陣工廠不能只生產矩陣,還要給矩陣賦初值才行,例子如下:
ts:
factory /1..6/ : a,b;
plant /1..3/ : c,x;
endts
data:
a = 1, 2, 3, 4, 5, 6;
b = 6.0, 5.0, 4.0, 3.0, 2.0, 1.0;
c = 10, 20, 30;
enddata
以上程序對應以下知識點:
①不是每個矩陣都要賦值,有些矩陣正是我們要求解的變量
②需要賦值的矩陣必須賦滿,不能給6個元素的矩陣只賦3個數值
③Lingo中可以給矩陣賦整數,也可以賦小數
④Lingo不是一行一行讀代碼的,所以用data:和enddata表示矩陣賦值的起止
————————————
我寫的一個完整的計算
?
……
-end-
本文發布于:2023-02-28 20:06:00,感謝您對本站的認可!
本文鏈接:http://m.newhan.cn/zhishi/a/167765574678928.html
版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。
本文word下載地址:lingo教程(lingo教程與實例pdf).doc
本文 PDF 下載地址:lingo教程(lingo教程與實例pdf).pdf
| 留言與評論(共有 0 條評論) |