• <em id="6vhwh"><rt id="6vhwh"></rt></em>

    <style id="6vhwh"></style>

    <style id="6vhwh"></style>
    1. <style id="6vhwh"></style>
        <sub id="6vhwh"><p id="6vhwh"></p></sub>
        <p id="6vhwh"></p>
          1. 国产亚洲欧洲av综合一区二区三区 ,色爱综合另类图片av,亚洲av免费成人在线,久久热在线视频精品视频,成在人线av无码免费,国产精品一区二区久久毛片,亚洲精品成人片在线观看精品字幕 ,久久亚洲精品成人av秋霞

            pool break lite(poolbreaklite臺球)

            更新時間:2023-03-01 17:01:34 閱讀: 評論:0

            銅靈 發自 凹非寺

            量子位 出品 | 公眾號 QbitAI

            暑假即將到來,不用來充電學習豈不是虧大了。

            有這么一份干貨,匯集了機器學習架構和模型的經典知識點,還有各種TensorFlow和PyTorch的Jupyter Notebook筆記資源,地址都在,無需等待即可取用。

            除了取用方便,這份名為Deep Learning Models的資源還尤其全面。

            針對每個細分知識點的介紹還尤其全面的,比如在卷積神經網絡部分,作者就由淺及深分別介紹了AlexNet、VGG、ResNet等。

            干貨發布后,在GitHub短時間獲得了6000+顆星星,迅速聚集起大量人氣。

            圖靈獎得主、AI大牛Yann LeCun也強烈推薦,夸贊其為一份不錯的PyTorch和TensorFlow Jupyter筆記本推薦!

            這份資源的作者來頭也不小,他是威斯康星大學麥迪遜分校的助理教授Sebastian Raschka,此前還編寫過Python Machine Learning一書。

            話不多說現在進入干貨時間,好東西太多篇幅較長,記得先碼后看!

            原資源地址:

            https://github.com/rasbt/deeplearning-models

            干貨來也

            1、多層感知機

            多層感知機簡稱MLP,是一個打基礎的知識點:

            多層感知機:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb

            增加了Dropout部分的多層感知機:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb

            具備批標準化的多層感知機:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb

            從零開始了解多層感知機與反向傳播:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-m.ipynb

            2、卷積神經網絡

            在卷積神經網絡這一部分,細碎的知識點很多,包含基礎概念、全卷積網絡、AlexNet、VGG等多個內容。來看干貨:

            卷積神經網絡基礎入門:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-basic.ipynb

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb

            卷積神經網絡的初始化:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb

            想用等效卷積層替代全連接的話看看下面這個:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb

            全卷積神經網絡基礎知識在這里:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb

            Alexnet網絡模型在CIFAR-10數據集上的實現:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb

            關于VGG模型,你可能需要了解VGG-16架構:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb

            在CelebA上訓練的VGG-16性別分類器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb

            VGG19網絡架構:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb

            關于2015年被提出的經典CNN模型ResNet,最厲害的資源也在這了。

            比如ResNet和殘差塊:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb

            用MNIST數據集訓練的ResNet-18數字分類器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb

            用人臉屬性數據集CelebA訓練的ResNet-18性別分類器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb

            在MNIST上訓練的ResNet-34:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb

            在CelebA上訓練ResNet-34性別分類器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb

            在MNIST上訓練的ResNet-50數字分類器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb

            在CelebA上訓練ResNet-50性別分類器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb

            在CelebA上訓練ResNet-101性別分類器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb

            在CelebA上訓練ResNet-152性別分類器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb

            CIFAR-10分類器中的網絡:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb

            3、指標學習

            具有多層感知機的孿生網絡:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siame-1.ipynb

            4、自編碼器

            在自編碼器這一部分,同樣有很多細分類別需要學習,注意留出充足時間學習這一內容。

            自編碼器的種類很多,比如全連接自編碼器:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-basic.ipynb

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb

            還有卷積自編碼器。比如這個反卷積(轉置卷積)卷積自編碼器:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb

            沒有進行池化的反卷積自編碼器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv-nopool.ipynb

            有最近鄰插值的卷積自編碼器:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-conv-nneighbor.ipynb

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb

            在CelebA上訓練過的有最近鄰插值的卷積自編碼器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb

            在谷歌涂鴉數據集Quickdraw上訓練過的有最近鄰插值的卷積自編碼器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb

            變分自編碼器也是自編碼器中的重要一類:

            變分自編碼器基礎介紹:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb

            卷積變分自編碼器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb

            最后,還有條件變分自編碼器也需要關注。比如在重建損失中有標簽的:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb

            沒有標簽的:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb

            有標簽的條件變分自編碼器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb

            沒有標簽的條件變分自編碼器:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb

            5、生成對抗網絡(GAN)

            在MNIST上的全連接GAN:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb

            在MNIST上訓練的條件GAN:

            TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb

            用Label Smoothing方法優化過的條件GAN:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb

            6、循環神經網絡

            針對多對一的情緒分析和分類問題中,包括簡單單層RNN:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb

            壓縮序列的簡單單層RNN:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb

            RNN和LSTM技術:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb

            基于GloVe預訓練詞向量的有LSTM核的RNN:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb-glove.ipynb

            GRU核的RNN:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

            多層雙向RNN:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

            一對多/序列到序列的生成新文本的字符RNN:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

            7、有序回歸

            針對不同場景,有三類有序回歸干貨:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

            8、方法和技巧

            關于周期性學習速率,這里也有一份小技巧:

            PyTorch版

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb

            9、PyTorch Workflow和機制

            用自定義數據集加載PyTorch,這里也有一些攻略:

            比如用CelebA中的人臉圖像:

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb

            比如用街景數據集:

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-svhn.ipynb

            比如用Quickdraw:

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb

            在訓練和預處理環節,標準化圖像可參考:

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb

            圖像信息樣本:

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb

            有文本文檔的Char-RNN :

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

            在CelebA上訓練的VGG-16性別分類器的并行計算等:

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb

            10、TensorFlow Workflow與機制

            這是這份干貨中的最后一個大分類,包含自定義數據集、訓練和預處理兩大部分。

            內容包括:

            將NumPy NPZ用于小批量訓練圖像數據集

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb

            用HDF5文件存儲圖像數據集,用于小規模訓練

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb

            用輸入pipeline從TFRecords文件中讀取數據

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb

            TensorFlow數據集API

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/datat-api.ipynb

            如果需要從TensorFlow Checkpoint文件和NumPy NPZ Archive中存儲和加載訓練模型,可移步:

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb

            11、傳統機器學習

            最后,如果你是從零開始入門,可以從傳統機器學習看起。包括感知機、邏輯回歸和Softmax回歸等。

            感知機部分TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb

            PyTorch版筆記

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb

            邏輯回歸部分也是一樣:

            邏輯回歸部分部分TensorFlow版Jupyter Notebooks

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb

            PyTorch版筆記

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb

            Softmax回歸,也稱為多項邏輯回歸:

            Softmax回歸部分部分TensorFlow版Jupyter Notebook

            https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb

            PyTorch版筆記

            https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb

            傳送門

            這份干貨滿滿的資源到這里就結束了,再次放上原文傳送門:

            https://github.com/rasbt/deeplearning-models

            超強干貨,記得收藏~

            — 完 —

            誠摯招聘

            量子位正在招募編輯/記者,工作地點在北京中關村。期待有才氣、有熱情的同學加入我們!相關細節,請在量子位公眾號(QbitAI)對話界面,回復“招聘”兩個字。

            量子位 QbitAI · 頭條號簽約作者

            ?'?' ? 追蹤AI技術和產品新動態

            本文發布于:2023-02-28 20:11:00,感謝您對本站的認可!

            本文鏈接:http://m.newhan.cn/zhishi/a/167766129478277.html

            版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。

            本文word下載地址:pool break lite(poolbreaklite臺球).doc

            本文 PDF 下載地址:pool break lite(poolbreaklite臺球).pdf

            標簽:臺球   break   pool   poolbreaklite   lite
            相關文章
            留言與評論(共有 0 條評論)
               
            驗證碼:
            Copyright ?2019-2022 Comsenz Inc.Powered by ? 實用文體寫作網旗下知識大全大全欄目是一個全百科類寶庫! 優秀范文|法律文書|專利查詢|
            主站蜘蛛池模板: 人妻中文字幕亚洲精品| 老熟女熟妇一区二区三区| 亚洲av国产av综合av| 中文字幕无码av不卡一区| 亚洲精品国产综合久久一线| 日韩有码精品中文字幕| 日韩成人一区二区三区在线观看| 亚洲国产一区二区精品专| 国产一级无码不卡视频| 日韩成人无码v清免费| 亚洲日产无码av| 国产精品综合av一区二区| 免费人成网站免费看视频| 激情在线网| 精品无码成人片一区二区| 久久美女夜夜骚骚免费视频| 国产色a在线观看| 免费黄色大全一区二区三区| 免费看a毛片| 日本三级香港三级三级人妇久 | 婷婷综合缴情亚洲| 日韩有码av中文字幕| 国内自拍视频一区二区三区| 国产精品无码不卡在线播放 | 国产一区二区视频在线| av亚洲一区二区在线| 蜜臀av黑人亚洲精品| 亚洲av成人网在线观看| 久久精品无码一区二区小草 | 久久国产色av免费看| 尤物无码一区| 99久久婷婷国产综合精品青草漫画| 丝袜美腿亚洲综合在线观看视频| 色香欲天天影视综合网| 国产成人无码AV大片大片在线观看| 亚洲男人AV天堂午夜在| 人妻系列无码专区无码中出| 无码一区二区波多野结衣播放搜索| 国产一区二区三区地址| 国产按头口爆吞精在线视频| 欧美精品亚洲日韩aⅴ|