
1
新北師大版小學(xué)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
常用的數(shù)量關(guān)系式
每份數(shù)X份數(shù)=總數(shù)
總數(shù)十每份數(shù)二份數(shù)總數(shù)十份數(shù)二每份數(shù)
1倍數(shù)X倍數(shù)=幾倍數(shù)
幾倍數(shù)*1倍數(shù)=倍數(shù)幾倍數(shù)寧倍數(shù)=1倍數(shù)
速度X時(shí)間二路程
路程*速度=時(shí)間路程*時(shí)間=速度
單價(jià)X數(shù)量=總價(jià)總價(jià)*單價(jià)=數(shù)量總價(jià)*數(shù)量=單價(jià)
工作效率X工作時(shí)間=工作總量工作總量十工作效率=工作時(shí)間
工作總量十工作時(shí)間=工作效率
加數(shù)+加數(shù)=和和—一個(gè)加數(shù)=另一個(gè)加數(shù)
被減數(shù)-減數(shù)=差被減數(shù)-差=減數(shù)差+減數(shù)=被減數(shù)
因數(shù)X因數(shù)二積
積十一個(gè)因數(shù)二另一個(gè)因數(shù)
被除數(shù)*除數(shù)=商被除數(shù)*商=除數(shù)商X除數(shù)=被除數(shù)
小學(xué)數(shù)學(xué)圖形計(jì)算公式
止方形(C:周長(zhǎng)S:面積a:邊長(zhǎng))
周長(zhǎng)=邊長(zhǎng)X4
C=4a
面積=邊長(zhǎng)X邊長(zhǎng)S=aXa
正方體(V:體積a:棱長(zhǎng))
表面積=棱長(zhǎng)X棱長(zhǎng)X6S表=aXaX6
體積=棱長(zhǎng)X棱長(zhǎng)X棱長(zhǎng)V=aXaXa
長(zhǎng)方形(C:周長(zhǎng)S:面積a:邊長(zhǎng))
周長(zhǎng)=(長(zhǎng)+寬)X2C=2(a+b)
面積=長(zhǎng)乂寬S=ab
長(zhǎng)方體(V:體積s:面積a:長(zhǎng)b:寬h:咼)
(1)表面積(長(zhǎng)X寬+長(zhǎng)X高+寬X高)X2S=2(ab+ah+bh)
⑵體積*X寬X高V=abh
三角形(s:面積a:底h:高)
1、
2、
3、
4、
5、
6、
7、
8、
9、
1、
2、
3、
4、
5、
2
面積=底乂咼*2s=ah*2
3
二角形咼=面積X2寧底二角形底=面積X2寧咼
6平行四邊形(s:面積a:底h:高)
面積=底乂高s=ah
7、梯形(s:面積a:上底b:下底h:高)
面積=(上底+下底)X高*2s=(a+b)Xh寧2
8、圓形(S:面積C:周長(zhǎng)JId=直徑r=半徑)
(1)周長(zhǎng)=直徑XJ=2XJX半徑C=Jd=2Jr
⑵面積=半徑X半徑XJ
9、圓柱體(v:體積h:高s:底面積r:底面半徑c:底面周長(zhǎng))
(1)側(cè)面積=底面周長(zhǎng)X高=ch(2Jr或Jd)(2)表面積=側(cè)面積+底面積X2
(3)體積二底面積X咼
(4)體積=側(cè)面積*2X半徑
10、圓錐體(v:體積h:高s:底面積r:底面半徑)
體積二底面積X咼*3
11、總數(shù)十總份數(shù)=平均數(shù)
12、和差問題的公式
(和+差)-2二大數(shù)(和一差)-2二小數(shù)
13、和倍問題
和*(倍數(shù)—1)=小數(shù)
小數(shù)X倍數(shù)=大數(shù)(或者和—小數(shù)=大數(shù))
14、差倍問題
差*(倍數(shù)—1)=小數(shù)
小數(shù)X倍數(shù)=大數(shù)(或小數(shù)+差=大數(shù))
15、相遇問題
相遇路程=速度和X相遇時(shí)間
相遇時(shí)間=相遇路程*速度和
速度和=相遇路程*相遇時(shí)間
16、濃度問題
溶質(zhì)的重量+溶劑的重量=溶液的重量
溶質(zhì)的重量十溶液的重量X100%^濃度
溶液的重量X濃度=溶質(zhì)的重量
溶質(zhì)的重量*濃度=溶液的重量
4
17、利潤(rùn)與折扣問題
利潤(rùn)=售出價(jià)一成本
利潤(rùn)率二利潤(rùn)十成本X100滄(售出價(jià)十成本一1)X100%漲跌金額二本金X漲跌百分比
利息=本金X利率X時(shí)間
稅后利息=本金X利率X時(shí)間X(1—20%)
常用單位換算
長(zhǎng)度單位換算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米
面積單位換算
1平方千米=100公頃1公頃=10000平方米1平方米=100平方分米
1平方分米=100平方厘米1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升
1立方厘米=1毫升1立方米=1000升
重量單位換算
1噸=1000千克1千克=1000克1千克=1公斤
人民幣單位換算
1元=10角1角=10分1元=100分
時(shí)間單位換算
1世紀(jì)=100年1年=12月大月(31天)有:135781012月小月(30天)的有:46911
月
平年2月28天,閏年2月29天平年全年365天,閏年全年366天1日=24小時(shí)
1時(shí)=60分1分=60秒1時(shí)=3600秒
基本概念第一章數(shù)和數(shù)的運(yùn)算
5
一概念
(一)整數(shù)
1整數(shù)的意義
自然數(shù)和0都是整數(shù)。
2自然數(shù)
我們?cè)跀?shù)物體的時(shí)候,用來表示物體個(gè)數(shù)的1,2,3……叫做自然數(shù)。
一個(gè)物體也沒有,用0表示。0也是自然數(shù)。
3計(jì)數(shù)單位
一(個(gè))、十、百、千、萬、十萬、百萬、千萬、億都是計(jì)數(shù)單位。
每相鄰兩個(gè)計(jì)數(shù)單位之間的進(jìn)率都是10。這樣的計(jì)數(shù)法叫做十進(jìn)制計(jì)數(shù)法。4數(shù)位
計(jì)數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。
5數(shù)的整除
整數(shù)a除以整數(shù)b(b工0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整
除a。
如果數(shù)a能被數(shù)b(b工0)整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)(或a的因數(shù))。倍數(shù)
和約數(shù)是相互依存的。
因?yàn)?5能被7整除,所以35是7的倍數(shù),7是35的約數(shù)。
一個(gè)數(shù)的約數(shù)的個(gè)數(shù)是有限的,其中最小的約數(shù)是1,最大的約數(shù)是它本身。例如:10
的約數(shù)有1、2、5、10,其中最小的約數(shù)是1,最大的約數(shù)是10。
一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的,其中最小的倍數(shù)是它本身。3的倍數(shù)有:3、69、12……其中最小
的倍數(shù)是3,沒有最大的倍數(shù)。
個(gè)位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。。
個(gè)位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。。
一個(gè)數(shù)的各位上的數(shù)的和能被3整除,這個(gè)數(shù)就能被3整除,例如:12、108、204都能被3整除。
一個(gè)數(shù)各位數(shù)上的和能被9整除,這個(gè)數(shù)就能被9整除。
能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。
一個(gè)數(shù)的末兩位數(shù)能被4(或25)整除,這個(gè)數(shù)就能被4(或25)整除。例如:16、404、1256
6
都能被4整除,50、325、500、1675都能被25整除。
一個(gè)數(shù)的末三位數(shù)能被8(或125)整除,這個(gè)數(shù)就能被8(或125)整除。例如:1168、
4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數(shù)叫做偶數(shù)。
不能被2整除的數(shù)叫做奇數(shù)。
0也是偶數(shù)。自然數(shù)按能否被2整除的特征可分為奇數(shù)和偶數(shù)。
一個(gè)數(shù),如果只有1和它本身兩個(gè)約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素?cái)?shù)),100以內(nèi)的質(zhì)數(shù)有:
2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、
83、89、97。
一個(gè)數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù),例如4、&&9、12
都是合數(shù)。
1不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了1夕卜,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù)按其約數(shù)的個(gè)數(shù)的不
同分類,可分為質(zhì)數(shù)、合數(shù)和1。
每個(gè)合數(shù)都可以寫成幾個(gè)質(zhì)數(shù)相乘的形式。其中每個(gè)質(zhì)數(shù)都是這個(gè)合數(shù)的因數(shù),叫做這個(gè)合數(shù)的質(zhì)因
數(shù),例如15=3X5,3和5叫做15的質(zhì)因數(shù)。
把一個(gè)合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。
例如把28分解質(zhì)因數(shù)
幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù)。其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù),
例如12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12
和18的公約數(shù),6是它們的最大公約數(shù)。
公約數(shù)只有1的兩個(gè)數(shù),叫做互質(zhì)數(shù),成互質(zhì)關(guān)系的兩個(gè)數(shù),有下列幾種情況:
1和任何自然數(shù)互質(zhì)。
相鄰的兩個(gè)自然數(shù)互質(zhì)。
兩個(gè)不同的質(zhì)數(shù)互質(zhì)。
當(dāng)合數(shù)不是質(zhì)數(shù)的倍數(shù)時(shí),這個(gè)合數(shù)和這個(gè)質(zhì)數(shù)互質(zhì)。
兩個(gè)合數(shù)的公約數(shù)只有1時(shí),這兩個(gè)合數(shù)互質(zhì),如果幾個(gè)數(shù)中任意兩個(gè)都互質(zhì),就說這幾個(gè)數(shù)兩兩互質(zhì)。
如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個(gè)數(shù)的最大公約數(shù)。
如果兩個(gè)數(shù)是互質(zhì)數(shù),它們的最大公約數(shù)就是1。
幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù),其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù),
7
如2的倍數(shù)有2、4、6、8、10、12、14、16、18……
3的倍數(shù)有3、6、9、12、15、18……其中6、12、18……是2、3的公倍數(shù),6是它們的最小公倍數(shù)。。
如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個(gè)數(shù)的最小公倍數(shù)。
如果兩個(gè)數(shù)是互質(zhì)數(shù),那么這兩個(gè)數(shù)的積就是它們的最小公倍數(shù)。
幾個(gè)數(shù)的公約數(shù)的個(gè)數(shù)是有限的,而幾個(gè)數(shù)的公倍數(shù)的個(gè)數(shù)是無限的。
(二)小數(shù)
1小數(shù)的意義
把整數(shù)1平均分成10份、100份、1000份……得到的十分之幾、百分之幾、千分之幾……可以用小
數(shù)表示。
一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……
一個(gè)小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點(diǎn)部分組成。數(shù)中的圓點(diǎn)叫做小數(shù)點(diǎn),小數(shù)點(diǎn)左邊的
數(shù)叫做整數(shù)部分,小數(shù)點(diǎn)左邊的數(shù)叫做整數(shù)部分,小數(shù)點(diǎn)右邊的數(shù)叫做小數(shù)部分。
在小數(shù)里,每相鄰兩個(gè)計(jì)數(shù)單位之間的進(jìn)率都是10。小數(shù)部分的最高分?jǐn)?shù)單位“十分之一”
和整數(shù)部分的最低單位“一”之間的進(jìn)率也是10。
2小數(shù)的分類
純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如:0.25、0.368都是純小數(shù)。
帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。例如:3.25、5.26都是帶小數(shù)。
有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。例如:41.7、25.3、0.23都是有限小數(shù)。
無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。例如:4.33...................3.1415926......
無限不循環(huán)小數(shù):一個(gè)數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。例
如:n
循環(huán)小數(shù):一個(gè)數(shù)的小數(shù)部分,有一個(gè)數(shù)字或者幾個(gè)數(shù)字依次不斷重復(fù)出現(xiàn),這個(gè)數(shù)叫做循
環(huán)小數(shù)。例如:3.555……0.0333……12.109109……
一個(gè)循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字叫做這個(gè)循環(huán)小數(shù)的循環(huán)節(jié)。例如:
3.99……的循環(huán)節(jié)是“9”,0.5454……的循環(huán)節(jié)是“54”。
純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。例如:3.111……
8
0.5656……
混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混循環(huán)小數(shù)。3.1222……
0.03333……
寫循環(huán)小數(shù)的時(shí)候,為了簡(jiǎn)便,小數(shù)的循環(huán)部分只需寫出一個(gè)循環(huán)節(jié),并在這個(gè)循環(huán)節(jié)的首、末位數(shù)字上
各點(diǎn)一個(gè)圓點(diǎn)。如果循環(huán)節(jié)只有一個(gè)數(shù)字,就只在它的上面點(diǎn)一個(gè)點(diǎn)。例如:
3.777……簡(jiǎn)寫作0.5302302……簡(jiǎn)寫作。
(三)分?jǐn)?shù)
1分?jǐn)?shù)的意義
把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分?jǐn)?shù)。
在分?jǐn)?shù)里,中間的橫線叫做分?jǐn)?shù)線;分?jǐn)?shù)線下面的數(shù),叫做分母,表示把單位“1”平均分成
多少份;分?jǐn)?shù)線下面的數(shù)叫做分子,表示有這樣的多少份。
把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分?jǐn)?shù)單位。
2分?jǐn)?shù)的分類
真分?jǐn)?shù):分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù)。真分?jǐn)?shù)小于1O
假分?jǐn)?shù):分子比分母大或者分子和分母相等的分?jǐn)?shù),叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或等于1O
帶分?jǐn)?shù):假分?jǐn)?shù)可以寫成整數(shù)與真分?jǐn)?shù)合成的數(shù),通常叫做帶分?jǐn)?shù)。
3約分和通分
把一個(gè)分?jǐn)?shù)化成同它相等但是分子、分母都比較小的分?jǐn)?shù),叫做約分。
分子分母是互質(zhì)數(shù)的分?jǐn)?shù),叫做最簡(jiǎn)分?jǐn)?shù)。
把異分母分?jǐn)?shù)分別化成和原來分?jǐn)?shù)相等的同分母分?jǐn)?shù),叫做通分。
(四)百分?jǐn)?shù)
1表示一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的數(shù)叫做百分?jǐn)?shù),也叫做百分率或百分比。百分?jǐn)?shù)通常
用"%"來表示。百分號(hào)是表示百分?jǐn)?shù)的符號(hào)。
二方法
(一)數(shù)的讀法和寫法
9
1.整數(shù)的讀法:從高位到低位,一級(jí)一級(jí)地讀。讀億級(jí)、萬級(jí)時(shí),先按照個(gè)級(jí)的讀法去讀,
再在后面加一個(gè)“億”或“萬”字。每一級(jí)末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個(gè)0都只讀一個(gè)零。
2.整數(shù)的寫法:從高位到低位,一級(jí)一級(jí)地寫,哪一個(gè)數(shù)位上一個(gè)單位也沒有,就在那個(gè)數(shù)位上寫0。
3.小數(shù)的讀法:讀小數(shù)的時(shí)候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點(diǎn)讀作“點(diǎn)”,小數(shù)部分
從左向右順次讀出每一位數(shù)位上的數(shù)字。
4.小數(shù)的寫法:寫小數(shù)的時(shí)候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點(diǎn)寫在個(gè)位右下角,小數(shù)部分順次
寫出每一個(gè)數(shù)位上的數(shù)字。
5.分?jǐn)?shù)的讀法:讀分?jǐn)?shù)時(shí),先讀分母再讀“分之”然后讀分子,分子和分母按照整數(shù)的讀法來讀。
6.分?jǐn)?shù)的寫法:先寫分?jǐn)?shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。
7.百分?jǐn)?shù)的讀法:讀百分?jǐn)?shù)時(shí),先讀百分之,再讀百分號(hào)前面的數(shù),讀數(shù)時(shí)按照整數(shù)的讀法來讀。
8.百分?jǐn)?shù)的寫法:百分?jǐn)?shù)通常不寫成分?jǐn)?shù)形式,而在原來的分子后面加上百分號(hào)“%來表
示。
(二)數(shù)的改寫
一個(gè)較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。有時(shí)還
可以根據(jù)需要,省略這個(gè)數(shù)某一位后面的數(shù),寫成近似數(shù)。
1.準(zhǔn)確數(shù):在實(shí)際生活中,為了計(jì)數(shù)的簡(jiǎn)便,可以把一個(gè)較大的數(shù)改寫成以萬或億為單位的
數(shù)。改寫后的數(shù)是原數(shù)的準(zhǔn)確數(shù)。例如把1254300000改寫成以萬做單位的數(shù)是125430萬;
改寫成以億做單位的數(shù)12.543億。
2.近似數(shù):根據(jù)實(shí)際需要,我們還可以把一個(gè)較大的數(shù),省略某一位后面的尾數(shù),用一個(gè)近似數(shù)來表示。
例如:1302490015省略億后面的尾數(shù)是13億。
3.四舍五入法:要省略的尾數(shù)的最高位上的數(shù)是4或者比4小,就把尾數(shù)去掉;如果尾數(shù)的最高位上
的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的前一位進(jìn)1。例如:省略345900萬后面的尾數(shù)約是35
萬。省略4725097420億后面的尾數(shù)約是47億。
4.大小比較
1.比較整數(shù)大小:比較整數(shù)的大小,位數(shù)多的那個(gè)數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)
大,那個(gè)數(shù)就大;最高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個(gè)數(shù)就大。
2.比較小數(shù)的大小:先看它們的整數(shù)部分,,整數(shù)部分大的那個(gè)數(shù)就大;整數(shù)部分相同的,
十分位上的數(shù)大的那個(gè)數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個(gè)數(shù)就大……
3.比較分?jǐn)?shù)的大小:分母相同的分?jǐn)?shù),分子大的分?jǐn)?shù)比較大;分子相同的數(shù),分母小的分?jǐn)?shù)大。分?jǐn)?shù)
10
的分母和分子都不相同的,先通分,再比較兩個(gè)數(shù)的大小。
(三)數(shù)的互化
1.小數(shù)化成分?jǐn)?shù):原來有幾位小數(shù),就在1的后面寫幾個(gè)零作分母,把原來的小數(shù)去掉小數(shù)點(diǎn)作分子,
能約分的要約分。
2.分?jǐn)?shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,
一般保留三位小數(shù)。
3.一個(gè)最簡(jiǎn)分?jǐn)?shù),如果分母中除了2和5以外,不含有其他的質(zhì)因數(shù),這個(gè)分?jǐn)?shù)就能化成有限小數(shù);
如果分母中含有2和5以外的質(zhì)因數(shù),這個(gè)分?jǐn)?shù)就不能化成有限小數(shù)。
4.小數(shù)化成百分?jǐn)?shù):只要把小數(shù)點(diǎn)向右移動(dòng)兩位,同時(shí)在后面添上百分號(hào)。
5.百分?jǐn)?shù)化成小數(shù):把百分?jǐn)?shù)化成小數(shù),只要把百分號(hào)去掉,同時(shí)把小數(shù)點(diǎn)向左移動(dòng)兩位。
6.分?jǐn)?shù)化成百分?jǐn)?shù):通常先把分?jǐn)?shù)化成小數(shù)(除不盡時(shí),通常保留三位小數(shù)),再把小數(shù)化
成百分?jǐn)?shù)。
7.百分?jǐn)?shù)化成小數(shù):先把百分?jǐn)?shù)改寫成分?jǐn)?shù),能約分的要約成最簡(jiǎn)分?jǐn)?shù)。
(四)數(shù)的整除
1.把一個(gè)合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個(gè)合數(shù)的質(zhì)數(shù)去除,一直除到商是質(zhì)數(shù)為止,
再把除數(shù)和商寫成連乘的形式。
2.求幾個(gè)數(shù)的最大公約數(shù)的方法是:先用這幾個(gè)數(shù)的公約數(shù)連續(xù)去除,一直除到所得的商只
有公約數(shù)1為止,然后把所有的除數(shù)連乘求積,這個(gè)積就是這幾個(gè)數(shù)的的最大公約數(shù)。
3.求幾個(gè)數(shù)的最小公倍數(shù)的方法是:先用這幾個(gè)數(shù)(或其中的部分?jǐn)?shù))的公約數(shù)去除,一直除到互質(zhì)(或
兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,這個(gè)積就是這幾個(gè)數(shù)的最小公倍數(shù)。
4.成為互質(zhì)關(guān)系的兩個(gè)數(shù):1和任何自然數(shù)互質(zhì);相鄰的兩個(gè)自然數(shù)互質(zhì);當(dāng)合數(shù)不是
質(zhì)數(shù)的倍數(shù)時(shí),這個(gè)合數(shù)和這個(gè)質(zhì)數(shù)互質(zhì);兩個(gè)合數(shù)的公約數(shù)只有1時(shí),這兩個(gè)合數(shù)互質(zhì)。
(五)約分和通分
約分的方法:用分子和分母的公約數(shù)(1除外)去除分子、分母;通常要除到得出最簡(jiǎn)分?jǐn)?shù)為止。
通分的方法:先求出原來的幾個(gè)分?jǐn)?shù)分母的最小公倍數(shù),然后把各分?jǐn)?shù)化成用這個(gè)最小公倍
11
數(shù)作分母的分?jǐn)?shù)
三性質(zhì)和規(guī)律
(一)商不變的規(guī)律
商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時(shí)擴(kuò)大或者同時(shí)縮小相同的倍,商不變
(二)小數(shù)的性質(zhì)
小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。
(三)小數(shù)點(diǎn)位置的移動(dòng)引起小數(shù)大小的變化
1.小數(shù)點(diǎn)向右移動(dòng)一位,
原來的數(shù)就擴(kuò)大
10倍;小數(shù)點(diǎn)向右移動(dòng)兩位,
原來的數(shù)就擴(kuò)大100
倍;小數(shù)點(diǎn)向右移動(dòng)三位,
原來的數(shù)就擴(kuò)大1000倍
2.小數(shù)點(diǎn)向左移動(dòng)一位,
原來的數(shù)就縮小10倍;小數(shù)點(diǎn)向左移動(dòng)兩位,原來的數(shù)就縮小100
倍;小數(shù)點(diǎn)向左移動(dòng)三位,
原來的數(shù)就縮小
1000倍
12
3.小數(shù)點(diǎn)向左移或者向右移位數(shù)不夠時(shí),要用“0"補(bǔ)足位。
(四)分?jǐn)?shù)的基本性質(zhì)
分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母都乘以或者除以相同的數(shù)(零除外)
(五)分?jǐn)?shù)與除法的關(guān)系
1.被除數(shù)十除數(shù)=被除數(shù)/除數(shù)
2.因?yàn)榱悴荒茏鞒龜?shù),所以分?jǐn)?shù)的分母不能為零
3.被除數(shù)相當(dāng)于分子,除數(shù)相當(dāng)于分母。
四運(yùn)算的意義
(一)整數(shù)四則運(yùn)算
1整數(shù)加法:
把兩個(gè)數(shù)合并成一個(gè)數(shù)的運(yùn)算叫做加法。
在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分?jǐn)?shù),和是總數(shù)。
加數(shù)+加數(shù)=和一個(gè)加數(shù)=和-另一個(gè)加數(shù)
2整數(shù)減法:
已知兩個(gè)加數(shù)的和與其中的一個(gè)加數(shù),求另一個(gè)加數(shù)的運(yùn)算叫做減法。
在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是部分?jǐn)?shù)加法和減法
互為逆運(yùn)算。
3整數(shù)乘法:
求幾個(gè)相同加數(shù)的和的簡(jiǎn)便運(yùn)算叫做乘法。
在乘法里,相同的加數(shù)和相同加數(shù)的個(gè)數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。
在乘法里,0和任何數(shù)相乘都得0.1和任何數(shù)相乘都的任何數(shù)。
一個(gè)因數(shù)x—個(gè)因數(shù)=積一個(gè)因數(shù)=積十另一個(gè)因數(shù)
4整數(shù)除法:
已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算叫做除法。
在除法里,已知的積叫做被除數(shù),已知的一個(gè)因數(shù)叫做除數(shù),所求的因數(shù)叫做商。
乘法和除法互為逆運(yùn)算。
在除法里,0不能做除數(shù)。因?yàn)?和任何數(shù)相乘都得0,所以任何一個(gè)數(shù)除以0,均得不到一個(gè)確定的商。
,分?jǐn)?shù)的大小不變。
13
被除數(shù)十除數(shù)=商除數(shù)=被除數(shù)十商被除數(shù)=商乂除數(shù)
(二)小數(shù)四則運(yùn)算
1?小數(shù)加法:
小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個(gè)數(shù)合并成一個(gè)數(shù)的運(yùn)算。
2?小數(shù)減法:
小數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個(gè)加數(shù)的和與其中的一個(gè)加數(shù),求另一個(gè)加數(shù)的運(yùn)算.
3.小數(shù)乘法:
小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義相同,就是求幾個(gè)相同加數(shù)和的簡(jiǎn)便運(yùn)算;一個(gè)數(shù)乘純小數(shù)的意義是求這個(gè)數(shù)的十分之幾、
百分之幾、千分之幾……是多少。
4?小數(shù)除法:
小數(shù)除法的意義與整數(shù)除法的意義相同,就是已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算。
5.乘方:
求幾個(gè)相同因數(shù)的積的運(yùn)算叫做乘方。例如3x3=32
(三)分?jǐn)?shù)四則運(yùn)算
1.分?jǐn)?shù)加法:
分?jǐn)?shù)加法的意義與整數(shù)加法的意義相同。是把兩個(gè)數(shù)合并成一個(gè)數(shù)的運(yùn)算。
2.分?jǐn)?shù)減法:
分?jǐn)?shù)減法的意義與整數(shù)減法的意義相同。已知兩個(gè)加數(shù)的和與其中的一個(gè)加數(shù),求另一個(gè)加
數(shù)的運(yùn)算。
3.分?jǐn)?shù)乘法:
分?jǐn)?shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個(gè)相同加數(shù)和的簡(jiǎn)便運(yùn)算。
4.乘積是1的兩個(gè)數(shù)叫做互為倒數(shù)。
5.分?jǐn)?shù)除法:
分?jǐn)?shù)除法的意義與整數(shù)除法的意義相同。就是已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算。
(四)運(yùn)算定律
1.加法交換律:
14
兩個(gè)數(shù)相加,交換加數(shù)的位置,它們的和不變,即a+b=b+a。
2.加法結(jié)合律:
三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,再加上第三個(gè)數(shù);或者先把后兩個(gè)數(shù)相加,再和第一個(gè)數(shù)
相加它們的和不變,即(a+b)+c=a+(b+c)。
3.乘法交換律:
兩個(gè)數(shù)相乘,交換因數(shù)的位置它們的積不變,即axb=bxa。
4.乘法結(jié)合律:
三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,再乘以第三個(gè)數(shù);或者先把后兩個(gè)數(shù)相乘,再和第一個(gè)數(shù)
相乘,它們的積不變,即(axb)xc=ax(bxc)。
5.乘法分配律:
兩個(gè)數(shù)的和與一個(gè)數(shù)相乘,可以把兩個(gè)加數(shù)分別與這個(gè)數(shù)相乘再把兩個(gè)積相加,即(a+b)xc=a
xc+bxc。
6.減法的性質(zhì):
從一個(gè)數(shù)里連續(xù)減去幾個(gè)數(shù),可以從這個(gè)數(shù)里減去所有減數(shù)的和,差不變,即a-b-c=a-(b+c)。
(五)運(yùn)算法則
1.整數(shù)加法計(jì)算法則:
相同數(shù)位對(duì)齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進(jìn)一。
2.整數(shù)減法計(jì)算法則:
相同數(shù)位對(duì)齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。
3.整數(shù)乘法計(jì)算法則:
先用一個(gè)因數(shù)每一位上的數(shù)分別去乘另一個(gè)因數(shù)各個(gè)數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,
乘得的數(shù)的末尾就對(duì)齊哪一位,然后把各次乘得的數(shù)加起來。
4.整數(shù)除法計(jì)算法則:
先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位;如果不夠除,就多看一位,
除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補(bǔ)“0”占位。每
次除得的余數(shù)要小于除數(shù)。
5.小數(shù)乘法法則:
15
先按照整數(shù)乘法的計(jì)算法則算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點(diǎn)上小數(shù)點(diǎn);如果位數(shù)不夠,就用“0”
補(bǔ)足。
6.除數(shù)是整數(shù)的小數(shù)除法計(jì)算法則:
先按照整數(shù)除法的法則去除,商的小數(shù)點(diǎn)要和被除數(shù)的小數(shù)點(diǎn)對(duì)齊;如果除到被除數(shù)的末尾
仍有余數(shù),就在余數(shù)后面添“0”,再繼續(xù)除。
7.除數(shù)是小數(shù)的除法計(jì)算法則:
先移動(dòng)除數(shù)的小數(shù)點(diǎn),使它變成整數(shù),除數(shù)的小數(shù)點(diǎn)也向右移動(dòng)幾位(位數(shù)不夠的補(bǔ)“0”),
然后按照除數(shù)是整數(shù)的除法法則進(jìn)行計(jì)算。
8.同分母分?jǐn)?shù)加減法計(jì)算方法:
同分母分?jǐn)?shù)相加減,只把分子相加減,分母不變。
9.異分母分?jǐn)?shù)加減法計(jì)算方法:
先通分,然后按照同分母分?jǐn)?shù)加減法的的法則進(jìn)行計(jì)算。
10.帶分?jǐn)?shù)加減法的計(jì)算方法:
整數(shù)部分和分?jǐn)?shù)部分分別相加減,再把所得的數(shù)合并起來。
11.分?jǐn)?shù)乘法的計(jì)算法則:
分?jǐn)?shù)乘整數(shù),用分?jǐn)?shù)的分子和整數(shù)相乘的積作分子,分母不變;分?jǐn)?shù)乘分?jǐn)?shù),用分子相乘的積作分子,分母相乘的積作分母。
12.分?jǐn)?shù)除法的計(jì)算法則:
甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。
(六)運(yùn)算順序
1.小數(shù)四則運(yùn)算的運(yùn)算順序和整數(shù)四則運(yùn)算順序相同。
2.分?jǐn)?shù)四則運(yùn)算的運(yùn)算順序和整數(shù)四則運(yùn)算順序相同。
3.沒有括號(hào)的混合運(yùn)算:
同級(jí)運(yùn)算從左往右依次運(yùn)算;兩級(jí)運(yùn)算先算乘、除法,后算加減法
4.有括號(hào)的混合運(yùn)算:
16
先算小括號(hào)里面的,再算中括號(hào)里面的,最后算括號(hào)外面的。
5.第一級(jí)運(yùn)算:
加法和減法叫做第一級(jí)運(yùn)算。
6.第二級(jí)運(yùn)算:
乘法和除法叫做第二級(jí)運(yùn)算。
五應(yīng)用
(一)整數(shù)和小數(shù)的應(yīng)用
1簡(jiǎn)單應(yīng)用題
(1)簡(jiǎn)單應(yīng)用題:只含有一種基本數(shù)量關(guān)系,或用一步運(yùn)算解答的應(yīng)用題,通常叫做簡(jiǎn)單應(yīng)用題。
(2)解題步驟:
a審題理解題意:了解應(yīng)用題的內(nèi)容,知道應(yīng)用題的條件和問題。讀題時(shí),不丟字不添字邊讀邊思考,弄明白題中每句話的意思。
也可以復(fù)述條件和問題,幫助理解題意。
b選擇算法和列式計(jì)算:這是解答應(yīng)用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系
四則運(yùn)算的含義,分析數(shù)量關(guān)系,確定算法,進(jìn)行解答并標(biāo)明正確的單位名稱。
C檢驗(yàn):就是根據(jù)應(yīng)用題的條件和問題進(jìn)行檢查看所列算式和計(jì)算過程是否正確,是否符合題
意。如果發(fā)現(xiàn)錯(cuò)誤,馬上改正。
2復(fù)合應(yīng)用題
(1)有兩個(gè)或兩個(gè)以上的基本數(shù)量關(guān)系組成的,用兩步或兩步以上運(yùn)算解答的應(yīng)用題,通常叫做復(fù)合應(yīng)用題。
(2)含有三個(gè)已知條件的兩步計(jì)算的應(yīng)用題。
求比兩個(gè)數(shù)的和多(少)幾個(gè)數(shù)的應(yīng)用題。
比較兩數(shù)差與倍數(shù)關(guān)系的應(yīng)用題。
(3)含有兩個(gè)已知條件的兩步計(jì)算的應(yīng)用題。
已知兩數(shù)相差多少(或倍數(shù)關(guān)系)與其中一個(gè)數(shù),求兩個(gè)數(shù)的和(或差)。
已知兩數(shù)之和與其中一個(gè)數(shù),求兩個(gè)數(shù)相差多少(或倍數(shù)關(guān)系)。
(4)解答連乘連除應(yīng)用題。
(5)解答三步計(jì)算的應(yīng)用題。
(6)解答小數(shù)計(jì)算的應(yīng)用題:小數(shù)計(jì)算的加法、減法、乘法和除法的應(yīng)用題,他們的數(shù)量關(guān)
17
系、結(jié)構(gòu)、和解題方式都與正式應(yīng)用題基本相同,只是在已知數(shù)或未知數(shù)中間含有小數(shù)。
d答案:根據(jù)計(jì)算的結(jié)果,先口答,逐步過渡到筆答。
(3)解答加法應(yīng)用題:
a求總數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。
b求比一個(gè)數(shù)多幾的數(shù)應(yīng)用題:已知甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。
(4)解答減法應(yīng)用題:
a求剩余的應(yīng)用題:從已知數(shù)中去掉一部分,求剩下的部分。
-b求兩個(gè)數(shù)相差的多少的應(yīng)用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)
比甲數(shù)少多少。
c求比一個(gè)數(shù)少幾的數(shù)的應(yīng)用題:已知甲數(shù)是多少,,乙數(shù)比甲數(shù)少多少,求乙數(shù)是多少。
(5)解答乘法應(yīng)用題:
a求相同加數(shù)和的應(yīng)用題:已知相同的加數(shù)和相同加數(shù)的個(gè)數(shù),求總數(shù)。
b求一個(gè)數(shù)的幾倍是多少的應(yīng)用題:已知一個(gè)數(shù)是多少,另一個(gè)數(shù)是它的幾倍,求另一個(gè)數(shù)是多少。
(6)解答除法應(yīng)用題:
a把一個(gè)數(shù)平均分成幾份,求每一份是多少的應(yīng)用題:已知一個(gè)數(shù)和把這個(gè)數(shù)平均分成幾份的,求每一份是多少。
b求一個(gè)數(shù)里包含幾個(gè)另一個(gè)數(shù)的應(yīng)用題:已知一個(gè)數(shù)和每份是多少,求可以分成幾份。
C求一個(gè)數(shù)是另一個(gè)數(shù)的的幾倍的應(yīng)用題:已知甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾
倍。
d已知一個(gè)數(shù)的幾倍是多少,求這個(gè)數(shù)的應(yīng)用題
(7)常見的數(shù)量關(guān)系:
總價(jià)=單價(jià)X數(shù)量
路程=速度X時(shí)間
工作總量=工作時(shí)間X工效
總產(chǎn)量=單產(chǎn)量X數(shù)量
3典型應(yīng)用題
具有獨(dú)特的結(jié)構(gòu)特征的和特定的解題規(guī)律的復(fù)合應(yīng)用題,通常叫做典型應(yīng)用題。
(1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。
解題關(guān)鍵:在于確定總數(shù)量和與之相對(duì)應(yīng)的總份數(shù)。
18
算術(shù)平均數(shù):已知幾個(gè)不相等的同類量和與之相對(duì)應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系
式:數(shù)量之和*數(shù)量的個(gè)數(shù)=算術(shù)平均數(shù)。
加權(quán)平均數(shù):已知兩個(gè)以上若干份的平均數(shù),求總平均數(shù)是多少。
數(shù)量關(guān)系式(部分平均數(shù)X權(quán)數(shù))的總和十(權(quán)數(shù)的和)=加權(quán)平均數(shù)。
差額平均數(shù):是把各個(gè)大于或小于標(biāo)準(zhǔn)數(shù)的部分之和被總份數(shù)均分,求的是標(biāo)準(zhǔn)數(shù)與各數(shù)相差之和的平均數(shù)。
數(shù)量關(guān)系式:(大數(shù)-小數(shù))*2二小數(shù)應(yīng)得數(shù)最大數(shù)與各數(shù)之差的和*總份數(shù)=最大數(shù)應(yīng)
給數(shù)最大數(shù)與個(gè)數(shù)之差的和十總份數(shù)=最小數(shù)應(yīng)得數(shù)。
例:一輛汽車以每小時(shí)100千米的速度從甲地開往乙地,又以每小時(shí)60千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設(shè)為“1”,則
汽車行駛的總路程為“2”,從甲地到乙地的速度為100,所用的時(shí)間為,汽車從乙地到甲地速度為60千米,所用的時(shí)間是,
汽車共行的時(shí)間為+=,汽車的平均速度為2-=75(千米)
(2)歸一問題:已知相互關(guān)聯(lián)的兩個(gè)量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之
為歸一問題。
根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運(yùn)算就能求出“單一量”的歸一問題。又稱“單歸一。”
兩次歸一問題,用兩步運(yùn)算就能求出“單一量”的歸一問題。又稱“雙歸一。”
正歸一問題:用等分除法求出“單一量”之后,再用乘法計(jì)算結(jié)果的歸一問題。反歸一問題:用等分除法求出“單一量”之后,
再用除法計(jì)算結(jié)果的歸一問題。
解題關(guān)鍵:從已知的一組對(duì)應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標(biāo)準(zhǔn),
根據(jù)題目的要求算出結(jié)果。
數(shù)量關(guān)系式:?jiǎn)我涣縓份數(shù)=總數(shù)量(正歸一)
總數(shù)量*單一量=份數(shù)(反歸一)
例一個(gè)織布工人,在七月份織布4774米,照這樣計(jì)算,織布6930米,需要多少天?分析:必須先求出平均每天織布多少米,
就是單一量。6930-(4774-31)=45(天)
(3)歸總問題:是已知單位數(shù)量和計(jì)量單位數(shù)量的個(gè)數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個(gè)數(shù)),通過求總數(shù)量求得單
位數(shù)量的個(gè)數(shù)(或單位數(shù)量)。
19
特點(diǎn):兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。
數(shù)量關(guān)系式:?jiǎn)挝粩?shù)量X單位個(gè)數(shù)*另一個(gè)單位數(shù)量=另一個(gè)單位數(shù)量單位數(shù)量X單位個(gè)數(shù)寧另一個(gè)單位數(shù)
量=另一個(gè)單位數(shù)量。
例修一條水渠,原計(jì)劃每天修800米,6天修完。實(shí)際4天修完,每天修了多少米?分析:因?yàn)橐蟪雒刻煨薜拈L(zhǎng)度,就必須先
求出水渠的長(zhǎng)度。所以也把這類應(yīng)用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總量,歸總問題是先求出總
量,再求單一量。800X6-4=1200(米)
(4)和差問題:已知大小兩個(gè)數(shù)的和,以及他們的差,求這兩個(gè)數(shù)各是多少的應(yīng)用題叫做和差冋題。
解題關(guān)鍵:是把大小兩個(gè)數(shù)的和轉(zhuǎn)化成兩個(gè)大數(shù)的和(或兩個(gè)小數(shù)的和),然后再求另一個(gè)數(shù)解題規(guī)律:(和+差)十2=大數(shù)
大數(shù)—差二小數(shù)
(和—差)*2二小數(shù)和—小數(shù)=大數(shù)
例某加工廠甲班和乙班共有工人94人,因工作需要臨時(shí)從乙班調(diào)46人到甲班工作,這時(shí)乙班比甲班人數(shù)少12人,求原來甲
班和乙班各有多少人?
分析:從乙班調(diào)46人到甲班,對(duì)于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成2個(gè)乙班,即94-
12,由此得到現(xiàn)在的乙班是(94-12)-2=41(人),乙班在調(diào)出46人之前應(yīng)該為
41+46=87(人),甲班為94—87=7(人)
(5)和倍問題:已知兩個(gè)數(shù)的和及它們之間的倍數(shù)關(guān)系,求兩個(gè)數(shù)各是多少的應(yīng)用題,叫
做和倍問題。
解題關(guān)鍵:找準(zhǔn)標(biāo)準(zhǔn)數(shù)(即1倍數(shù))一般說來,題中說是“誰”的幾倍,把誰就確定為標(biāo)準(zhǔn)數(shù)。求出倍數(shù)和之后,再求出標(biāo)準(zhǔn)的
數(shù)量是多少。根據(jù)另一個(gè)數(shù)(也可能是幾個(gè)數(shù))與標(biāo)準(zhǔn)數(shù)的倍數(shù)關(guān)系,再去求另一個(gè)數(shù)(或幾個(gè)數(shù))的數(shù)量。
解題規(guī)律:和*倍數(shù)和=標(biāo)準(zhǔn)數(shù)標(biāo)準(zhǔn)數(shù)X倍數(shù)=另一個(gè)數(shù)
例:汽車運(yùn)輸場(chǎng)有大小貨車115輛,大貨車比小貨車的5倍多7輛,運(yùn)輸場(chǎng)有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的5倍還多7輛,這7輛也在總數(shù)115輛內(nèi),為了使總數(shù)與(5+1)倍對(duì)應(yīng),總車輛數(shù)應(yīng)(115-7)輛。
列式為(115-7)-(5+1)=18(輛),18X5+7=97(輛)
(6)差倍問題:已知兩個(gè)數(shù)的差,及兩個(gè)數(shù)的倍數(shù)關(guān)系,求兩個(gè)數(shù)各是多少的應(yīng)用題。
解題規(guī)律:兩個(gè)數(shù)的差*(倍數(shù)—1)=標(biāo)準(zhǔn)數(shù)標(biāo)準(zhǔn)數(shù)X倍數(shù)=另一個(gè)數(shù)。
例甲乙兩根繩子,甲繩長(zhǎng)63米,乙繩長(zhǎng)29米,兩根繩剪去同樣的長(zhǎng)度,結(jié)果甲所剩的
20
長(zhǎng)度是乙繩長(zhǎng)的3倍,甲乙兩繩所剩長(zhǎng)度各多少米?各減去多少米?
分析:兩根繩子剪去相同的一段,長(zhǎng)度差沒變,甲繩所剩的長(zhǎng)度是乙繩的3倍,實(shí)比乙繩多
(3-1)倍,以乙繩的長(zhǎng)度為標(biāo)準(zhǔn)數(shù)。列式(63-29)-(3-1)=17(米)…乙繩剩
下的長(zhǎng)度,17X3=51(米)…甲繩剩下的長(zhǎng)度,29-17=12(米)…剪去的長(zhǎng)度。
(7)行程問題:關(guān)于走路、行車等問題,一般都是計(jì)算路程、時(shí)間、速度,叫做行程問題。
解答這類問題首先要搞清楚速度、時(shí)間、路程、方向、杜速度和、速度差等概念,了解他們之間的關(guān)系,再根據(jù)這類問題的規(guī)律
解答。
解題關(guān)鍵及規(guī)律:
同時(shí)同地相背而行:路程=速度和X時(shí)間。
同時(shí)相向而行:相遇時(shí)間=速度和X時(shí)間
同時(shí)同向而行(速度慢的在前,快的在后):追及時(shí)間=路程速度差。
同時(shí)同地同向而行(速度慢的在后,快的在前):路程=速度差X時(shí)間。
例甲在乙的后面28千米,兩人同時(shí)同向而行,甲每小時(shí)行16千米,乙每小時(shí)行9千米,甲幾小時(shí)追上乙?
分析:甲每小時(shí)比乙多行(16-9)千米,也就是甲每小時(shí)可以追近乙(16-9)千米,這是速度差。
已知甲在乙的后面28千米(追擊路程),28千米里包含著幾個(gè)(16-9)千米,也就是追擊所需要的時(shí)間。列式28-
(16-9)=4(小時(shí))
(8)流水問題:一般是研究船在“流水”中航行的問題。它是行程問題中比較特殊的一種類
型,它也是一種和差問題。它的特點(diǎn)主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動(dòng)的速度。
順?biāo)俣龋捍樍骱叫械乃俣取?/p>
逆水速度:船逆流航行的速度。
順?biāo)俣?水速
逆速=船速-水速
解題關(guān)鍵:因?yàn)轫樍魉俣仁谴倥c水速的和,逆流速度是船速與水速的差,所以流水問題當(dāng)作和差問題解答。解題時(shí)要以水流
為線索。
解題規(guī)律:船行速度=(順?biāo)俣?逆流速度)*2
21
流水速度=(順流速度逆流速度)十2
路程=順流速度X順流航行所需時(shí)間
路程=逆流速度X逆流航行所需時(shí)間
例一只輪船從甲地開往乙地順?biāo)校啃r(shí)行28千米,到乙地后,又逆水航行,回到甲地。逆水比順?biāo)嘈?小時(shí),已知
水速每小時(shí)4千米。求甲乙兩地相距多少千米?分析:此題必須先知道順?biāo)乃俣群晚標(biāo)枰臅r(shí)間,或者逆水速度和逆水的
時(shí)間。已知
順?biāo)俣群退魉俣龋虼瞬浑y算出逆水的速度,但順?biāo)玫臅r(shí)間,逆水所用的時(shí)間不知
道,只知道順?biāo)饶嫠儆?小時(shí),抓住這一點(diǎn),就可以就能算出順?biāo)畯募椎氐揭业氐乃玫臅r(shí)間,這樣就能算出甲乙兩地的路
程。列式為284X2=20(千米)20X2=40(千
米)40十(4X2)=5(小時(shí))28X5=140(千米)。
(9)還原問題:已知某未知數(shù),經(jīng)過一定的四則運(yùn)算后所得的結(jié)果,求這個(gè)未知數(shù)的應(yīng)用
題,我們叫做還原問題。
解題關(guān)鍵:要弄清每一步變化與未知數(shù)的關(guān)系。
解題規(guī)律:從最后結(jié)果出發(fā),采用與原題中相反的運(yùn)算(逆運(yùn)算)方法,逐步推導(dǎo)出原數(shù)。
根據(jù)原題的運(yùn)算順序列出數(shù)量關(guān)系,然后采用逆運(yùn)算的方法計(jì)算推導(dǎo)出原數(shù)。
解答還原問題時(shí)注意觀察運(yùn)算的順序。若需要先算加減法,后算乘除法時(shí)別忘記寫括號(hào)。
例某小學(xué)三年級(jí)四個(gè)班共有學(xué)生168人,如果四班調(diào)3人到三班,三班調(diào)6人到二班,二班調(diào)6人到一班,一班調(diào)2人到四
班,則四個(gè)班的人數(shù)相等,四個(gè)班原有學(xué)生多少人?分析:當(dāng)四個(gè)班人數(shù)相等時(shí),應(yīng)為168十4,以四班為例,它調(diào)給三班3人,
又從一班調(diào)入2人,所以四班原有的人數(shù)減去3再加上2等于平均數(shù)。四班原有人數(shù)列式為168十4-2+3=43(人)
一班原有人數(shù)列式為168-4-6+2=38(人);二班原有人數(shù)列式為168-4-6+6=42(人)
三班原有人數(shù)列式為168-4-3+6=45(人)。
(10)植樹問題:這類應(yīng)用題是以“植樹”為內(nèi)容。凡是研究總路程、株距、段數(shù)、棵樹四
種數(shù)量關(guān)系的應(yīng)用題,叫做植樹問題。
解題關(guān)鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長(zhǎng)植樹,然后按基本公式進(jìn)行計(jì)
算。
解題規(guī)律:沿線段植樹
棵樹=段數(shù)+1棵樹=總路程*株距+1
22
株距=總路程*(棵樹-1)總路程=株距X(棵樹-1)
沿周長(zhǎng)植樹
棵樹=總路程寧株距
株距=總路程寧棵樹
23
總路程二株距X棵樹
例沿公路一旁埋電線桿301根,每相鄰的兩根的間距是50米。后來全部改裝,只埋了201
根。求改裝后每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為
(201-1)=75(米)
(11)盈虧問題:是在等分除法的基礎(chǔ)上發(fā)展起來的。他的特點(diǎn)是把一定數(shù)量的物品,平
均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次不足(或兩次都有余),或兩次都不
足),已知所余和不足的數(shù)量,求物品適量和參加分配人數(shù)的問題,叫做盈虧問題。
解題關(guān)鍵:盈虧問題的解法要點(diǎn)是先求兩次分配中分配者沒份所得物品數(shù)量的差,再求兩次
分配中各次共分物品的差(也稱總差額),用前一個(gè)差去除后一個(gè)差,就得到分配者的數(shù),進(jìn)而再求得物品數(shù)。
解題規(guī)律:總差額十每人差額二人數(shù)
總差額的求法可以分為以下四種情況:
第一次多余,第二次不足,總差額=多余+不足
第一次正好,第二次多余或不足,總差額=多余或不足
第一次多余,第二次也多余,總差額=大多余-小多余
第一次不足,第二次也不足,總差額=大不足-小不足
例參加美術(shù)小組的同學(xué),每個(gè)人分的相同的支數(shù)的色筆,如果小組10人,則多25支,如
果小組有12人,色筆多余5支。求每人分得幾支?共有多少支色鉛筆?
分析:每個(gè)同學(xué)分到的色筆相等。這個(gè)活動(dòng)小組有12人,比10人多2人,而色筆多出了
(25-5)=20支,2個(gè)人多出20支,一個(gè)人分得10支。列式為(25-5)-(12-10)=10(支)10X12+5=125
(支)。
(12)年齡問題:將差為一定值的兩個(gè)數(shù)作為題中的一個(gè)條件,這種應(yīng)用題被稱為“年齡問題”
解題關(guān)鍵:年齡問題與和差、和倍、差倍問題類似,主要特點(diǎn)是隨著時(shí)間的變化,年歲不斷
增長(zhǎng),但大小兩個(gè)不同年齡的差是不會(huì)改變的,因此,年齡問題是一種“差不變”的問題,解題時(shí),要善于利用差不變的特點(diǎn)。
例父親48歲,兒子21歲。問幾年前父親的年齡是兒子的4倍?
50X(301-1)-
24
分析:父子的年齡差為48-21=27(歲)。由于幾年前父親年齡是兒子的4倍,可知父子年齡的倍數(shù)差是(4-1)倍。這樣可以
算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的4倍。列式為:21(48-21)-(4-1)=12(年)
(13)雞兔問題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應(yīng)用
題。通常稱為“雞兔問題”又稱雞兔同籠問題
解題關(guān)鍵:解答雞兔問題一般采用假設(shè)法,假設(shè)全是一種動(dòng)物(如全是“雞”或全是“兔”,
然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。
解題規(guī)律:(總腿數(shù)-雞腿數(shù)x總頭數(shù))寧一只雞兔腿數(shù)的差=兔子只數(shù)
兔子只數(shù)=(總腿數(shù)-2X總頭數(shù))十2
如果假設(shè)全是兔子,可以有下面的式子:
雞的只數(shù)=(4X總頭數(shù)-總腿數(shù))十2
兔的頭數(shù)=總頭數(shù)-雞的只數(shù)
例雞兔同籠共50個(gè)頭,170條腿。問雞兔各有多少只?
兔子只數(shù)(170-2X50)-2=35(只)
雞的只數(shù)50-35=15(只)
(二)分?jǐn)?shù)和百分?jǐn)?shù)的應(yīng)用
1分?jǐn)?shù)加減法應(yīng)用題:
分?jǐn)?shù)加減法的應(yīng)用題與整數(shù)加減法的應(yīng)用題的結(jié)構(gòu)、數(shù)量關(guān)系和解題方法基本相同,所不同
的只是在已知數(shù)或未知數(shù)中含有分?jǐn)?shù)。
2分?jǐn)?shù)乘法應(yīng)用題:
是指已知一個(gè)數(shù),求它的幾分之幾是多少的應(yīng)用題。
特征:已知單位“1”的量和分率,求與分率所對(duì)應(yīng)的實(shí)際數(shù)量。
解題關(guān)鍵:準(zhǔn)確判斷單位“1”的量。找準(zhǔn)要求問題所對(duì)應(yīng)的分率,然后根據(jù)一個(gè)數(shù)乘分?jǐn)?shù)的
意義正確列式。
3分?jǐn)?shù)除法應(yīng)用題:
求一個(gè)數(shù)是另一個(gè)數(shù)的幾分之幾(或百分之幾)是多少。
特征:已知一個(gè)數(shù)和另一個(gè)數(shù),求一個(gè)數(shù)是另一個(gè)數(shù)的幾分之幾或百分之幾較量,“另一個(gè)數(shù)”是標(biāo)準(zhǔn)量。求
分率或百分率,也就是求他們的倍數(shù)關(guān)系。
解題關(guān)鍵:從問題入手,搞清把誰看作標(biāo)準(zhǔn)的數(shù)也就是把誰看作了“單位一”,誰和單位一的
“一個(gè)數(shù)”是比
25
量作比較,誰就作被除數(shù)。
甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標(biāo)準(zhǔn)量,用甲除以乙。
甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之幾)。關(guān)系式(甲數(shù)減乙數(shù))/乙數(shù)或(甲
數(shù)減乙數(shù))/甲數(shù)。
已知一個(gè)數(shù)的幾分之幾(或百分之幾),求這個(gè)數(shù)。
特征:已知一個(gè)實(shí)際數(shù)量和它相對(duì)應(yīng)的分率,求單位“1”的量。
解題關(guān)鍵:準(zhǔn)確判斷單位“1”的量把單位“1”的量看成x根據(jù)分?jǐn)?shù)乘法的意義列方程,或者根據(jù)分?jǐn)?shù)除法的意義列算式,但
必須找準(zhǔn)和分率相對(duì)應(yīng)的已知實(shí)際
數(shù)量。
4出勤率
發(fā)芽率=發(fā)芽種子數(shù)/試驗(yàn)種子數(shù)X100%
小麥的出粉率=面粉的重量/小麥的重量X100%
產(chǎn)品的合格率=合格的產(chǎn)品數(shù)/產(chǎn)品總數(shù)X100%
職工的出勤率=實(shí)際出勤人數(shù)/應(yīng)出勤人數(shù)X100%
5工程問題:
是分?jǐn)?shù)應(yīng)用題的特例,它與整數(shù)的工作問題有著密切的聯(lián)系。它是探討工作總量、工作效率和工作時(shí)間三個(gè)數(shù)量之間相互關(guān)系的
一種應(yīng)用題。
解題關(guān)鍵:把工作總量看作單位“1”,工作效率就是工作時(shí)間的倒數(shù),然后根據(jù)題目的具體情況,靈活運(yùn)用公式。
數(shù)量關(guān)系式:
工作總量二工作效率X工作時(shí)間
工作效率二工作總量十工作時(shí)間
工作時(shí)間=工作總量十工作效率
工作總量十工作效率和=合作時(shí)間
6納稅
納稅就是把根據(jù)國(guó)家各種稅法的有關(guān)規(guī)定,按照一定的比率把集體或個(gè)人收入的一部分繳納
給國(guó)家。
繳納的稅款叫應(yīng)納稅款。
26
應(yīng)納稅額與各種收入的(銷售額、營(yíng)業(yè)額、應(yīng)納稅所得額……)的比率叫做稅率。
*利息
存入銀行的錢叫做本金。
取款時(shí)銀行多支付的錢叫做利息。
利息與本金的比值叫做利率。
利息二本金X利率X時(shí)間
第二章度量衡
一長(zhǎng)度
(一)什么是長(zhǎng)度
長(zhǎng)度是一維空間的度量。
(二)長(zhǎng)度常用單位
*公里(km)*米(m)*分米(dm)*厘米(cm)*毫米(mm)*微米(um)
(三)單位之間的換算
*1毫米=1000微米*1厘米=10毫米*1分米=10厘米*1米=1000毫米*1
千米=1000米
二面積
(一)什么是面積
面積,就是物體所占平面的大小。對(duì)立體物體的表面的多少的測(cè)量一般稱表面積。
(二)常用的面積單位
*平方毫米*平方厘米*平方分米*平方米*平方千米
(三)面積單位的換算
*1平方厘米=100平方毫米*1平方分米=100平方厘米*1平方米=100平方分米
*1公傾=10000平方米*1平方公里=100公頃
三體積和容積
(一)什么是體積、容積
體積,就是物體所占空間的大小。
容積,箱子、油桶、倉(cāng)庫(kù)等所能容納物體的體積,通常叫做它們的容積
27
(二)常用單位
1體積單位
*立方米*立方分米*立方厘米
2容積單位*升*毫升
(三)單位換算
1體積單位
*1立方米=1000立方分米
*1立方分米=1000立方厘米
2容積單位
*1升=1000毫升
*1升=1立方米
*1毫升=1立方厘米
四質(zhì)量
(一)什么是質(zhì)量
質(zhì)量,就是表示表示物體有多重。
(二)常用單位
*噸t*千克kg*克g
(三)常用換算
*一噸=1000千克
*1千克=1000克
五時(shí)間
(一)什么是時(shí)間
是指有起點(diǎn)和終點(diǎn)的一段時(shí)間
(二)常用單位
世紀(jì)、年、月、日、時(shí)、分、秒
(三)單位換算
*1世紀(jì)=100年
*1年=365天平年
28
*一年=366天閏年
*一、三、五、七、八、十、十二是大月大月有31天
*四、六、九、^一是小月小月小月有30天
*平年2月有28天閏年2月有29天
*1天=24小時(shí)
*1小時(shí)=60分
*一分=60秒
六貨幣
(一)什么是貨幣
貨幣是充當(dāng)一切商品的等價(jià)物的特殊商品。貨幣是價(jià)值的一般代表,可以購(gòu)買任何別的商品
(二)常用單位
*元*角*分
(三)單位換算
*1元=10角
*1角=10分
第三章代數(shù)初步知識(shí)
一、用字母表示數(shù)
1用字母表示數(shù)的意義和作用
*用字母表示數(shù),可以把數(shù)量關(guān)系簡(jiǎn)明的表達(dá)出來,同時(shí)也可以表示運(yùn)算的結(jié)果
2用字母表示常見的數(shù)量關(guān)系、運(yùn)算定律和性質(zhì)、幾何形體的計(jì)算公式
(1)常見的數(shù)量關(guān)系
路程用s表示,速度v用表示,時(shí)間用t表示,三者之間的關(guān)系:
s=vt
v=s/t
t=s/v
總價(jià)用a表示,單價(jià)用b表示,數(shù)量用c表示,三者之間的關(guān)系:
a=bcb=a/c
c=a/b
29
(2)運(yùn)算定律和性質(zhì)
加法交換律:
a+b=b+a
加法結(jié)合律:
(a+b)+c=a+(b+
c)
乘法交換律:ab=ba
乘法結(jié)合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
減法的性質(zhì):a-(b+c)=a-b-c
(3)用字母表示幾何形體的公式
長(zhǎng)方形的長(zhǎng)用a表示,寬用b表示,周長(zhǎng)用c表示,面積用s表示。
c=2(a+b)
s=ab
正方形的邊長(zhǎng)a用表示,周長(zhǎng)用c表示,面積用s表示。
c=4a
s=a2
平行四邊形的底a用表示,高用h表示,面積用s表示。
s=ah
三角形的底用a表示,高用h表示,面積用s表示。
s=ah/2
梯形的上底用a表示,下底b用表示,高用h表示,中位線用m表示,面積用s表示。
s=(a+b)h/2
s=mh
圓的半徑用r表示,直徑用d表示,周長(zhǎng)用c表示,面積用s表示。
c=nd=2nr
s=nr2
扇形的半徑用r表示,n表示圓心角的度數(shù),面積用s表示。
s=nnr2/360
長(zhǎng)方體的長(zhǎng)用a表示,寬用b表示,高用h表示,表面積用s表示,體積用v表示。
v=shs=2(ab+ah+bh)
v=abh
正方體的棱長(zhǎng)用a表示,底面周長(zhǎng)c用表示,底面積用s表示,體積用v表示.
30
s=6a2
v=a3
圓柱的高用h表示,底面周長(zhǎng)用c表示,底面積用s表示,體積用v表示.
s狽寸=ch
s表=s側(cè)+2s底
v=sh
圓錐的高用h表示,底面積用s表示,體積用v表示.
v=sh/3
3用字母表示數(shù)的寫法
數(shù)字和字母、字母和字母相乘時(shí),乘號(hào)可以記作“.”,或者省略不寫,數(shù)字要寫在字母的前面。
當(dāng)“1”與任何字母相乘時(shí),“T省略不寫。
在一個(gè)問題中,同一個(gè)字母表示同一個(gè)量,不同的量用不同的字母表示。
用含有字母的式子表示問題的答案時(shí),除數(shù)一般寫成分母,如果式子中有加號(hào)或者減號(hào),要
先用括號(hào)把含字母的式子括起來,再在括號(hào)后面寫上單位的名稱。
4將數(shù)值代入式子求值
*把具體的數(shù)代入式子求值時(shí),要注意書寫格式:先寫出字母等于幾,然后寫出原式,再把數(shù)代入式子求值。字母表示的是數(shù),
后面不寫單位名稱。
*同一個(gè)式子,式子中所含字母取不同的數(shù)值,那么所求出的式子的值也不相同。
二、簡(jiǎn)易方程
(一)方程和方程的解
1方程:含有未知數(shù)的等式叫做方程。
注意方程是等式,又含有未知數(shù),兩者缺一不可。
方程和算術(shù)式不同。算術(shù)式是一個(gè)式子,它由運(yùn)算符號(hào)和已知數(shù)組成,它表示未知數(shù)。方程
是一個(gè)等式,在方程里的未知數(shù)可以參加運(yùn)算,并且只有當(dāng)未知數(shù)為特定的數(shù)值時(shí),方程才成立2方程的解:使方
程左右兩邊相等的未知數(shù)的值,叫做方程的解。
三、解方程
解方程,求方程的解的過程叫做解方程。
31
四、列方程解應(yīng)用題
1列方程解應(yīng)用題的意義
*用方程式去解答應(yīng)用題求得應(yīng)用題的未知量的方法。
2列方程解答應(yīng)用題的步驟
*弄清題意,確定未知數(shù)并用x表示;
*找出題中的數(shù)量之間的相等關(guān)系;
*列方程,解方程;
*檢查或驗(yàn)算,寫出答案。
3列方程解應(yīng)用題的方法
*綜合法:先把應(yīng)用題中已知數(shù)(量)和所設(shè)未知數(shù)(量)列成有關(guān)的代數(shù)式,再找出它們之間的等量關(guān)系,進(jìn)而列出方程。這
是從部分到整體的一種思維過程,其思考方向是從已知
到未知。
*分析法:先找出等量關(guān)系,再根據(jù)具體建立等量關(guān)系的需要,把應(yīng)用題中已知數(shù)(量)和所設(shè)的未知數(shù)(量)列成有關(guān)的代數(shù)
式進(jìn)而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。
4列方程解應(yīng)用題的范圍
小學(xué)范圍內(nèi)常用方程解的應(yīng)用題:
a一般應(yīng)用題;
b和倍、差倍問題;
c幾何形體的周長(zhǎng)、面積、體積計(jì)算;
d分?jǐn)?shù)、百分?jǐn)?shù)應(yīng)用題;
e比和比例應(yīng)用題。
五比和比例
1比的意義和性質(zhì)
(1)比的意義
兩個(gè)數(shù)相除又叫做兩個(gè)數(shù)的比。
“:”是比號(hào),讀作“比”。比號(hào)前面的數(shù)叫做比的前項(xiàng),比號(hào)后面的數(shù)叫做比的后項(xiàng)。比的前項(xiàng)除以后項(xiàng)所得的商,叫做比
值。
同除法比較,比的前項(xiàng)相當(dāng)于被除數(shù),后項(xiàng)相當(dāng)于除數(shù),比值相當(dāng)于商。
比值通常用分?jǐn)?shù)表示,也可以用小數(shù)表示,有時(shí)也可能是整數(shù)。
32
比的后項(xiàng)不能是零。
根據(jù)分?jǐn)?shù)與除法的關(guān)系,可知比的前項(xiàng)相當(dāng)于分子,后項(xiàng)相當(dāng)于分母,比值相當(dāng)于分?jǐn)?shù)值。
(2)比的性質(zhì)
比的前項(xiàng)和后項(xiàng)同時(shí)乘上或者除以相同的數(shù)(0除外),比值不變,這叫做比的基本性質(zhì)。
(3)求比值和化簡(jiǎn)比
求比值的方法:用比的前項(xiàng)除以后項(xiàng),它的結(jié)果是一個(gè)數(shù)值可以是整數(shù),也可以是小數(shù)或分?jǐn)?shù)。
根據(jù)比的基本性質(zhì)可以把比化成最簡(jiǎn)單的整數(shù)比。它的結(jié)果必須是一個(gè)最簡(jiǎn)比,即前、后項(xiàng)是互質(zhì)的數(shù)。
(4)比例尺
圖上距離:實(shí)際距離=比例尺
要求會(huì)求比例尺;已知圖上距離和比例尺求實(shí)際距離;已知實(shí)際距離和比例尺求圖上距離。線段比例尺:在圖上附有一條注有數(shù)
目的線段,用來表示和地面上相對(duì)應(yīng)的實(shí)際距離。
(5)按比例分配
在農(nóng)業(yè)生產(chǎn)和日常生活中,常常需要把一個(gè)數(shù)量按照一定的比來進(jìn)行分配。這種分配的方法通常叫做按比例分配。
方法:首先求出各部分占總量的幾分之幾,然后求出總數(shù)的幾分之幾是多少。
2比例的意義和性質(zhì)
(1)比例的意義
表示兩個(gè)比相等的式子叫做比例。
組成比例的四個(gè)數(shù),叫做比例的項(xiàng)。
兩端的兩項(xiàng)叫做外項(xiàng),中間的兩項(xiàng)叫做內(nèi)項(xiàng)。
(2)比例的性質(zhì)
在比例里,兩個(gè)外項(xiàng)的積等于兩個(gè)兩個(gè)內(nèi)向的積。這叫做比例的基本性質(zhì)。
(3)解比例
根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項(xiàng),就可以求出這個(gè)數(shù)比例中的另外一個(gè)未知項(xiàng)。求比例中的未知項(xiàng),叫做解比
例。
3正比例和反比例
本文發(fā)布于:2023-03-02 09:57:14,感謝您對(duì)本站的認(rèn)可!
本文鏈接:http://m.newhan.cn/zhishi/a/16777222346060.html
版權(quán)聲明:本站內(nèi)容均來自互聯(lián)網(wǎng),僅供演示用,請(qǐng)勿用于商業(yè)和其他非法用途。如果侵犯了您的權(quán)益請(qǐng)與我們聯(lián)系,我們將在24小時(shí)內(nèi)刪除。
本文word下載地址:北師大版小學(xué)數(shù)學(xué).doc
本文 PDF 下載地址:北師大版小學(xué)數(shù)學(xué).pdf
| 留言與評(píng)論(共有 0 條評(píng)論) |