
1、向量的的數(shù)量積
定義:已知兩個非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b
的夾角,記作〈a,b〉并規(guī)定0≤〈a,b〉≤π
定義:兩個向量的數(shù)量積(內(nèi)積、點積)是一個數(shù)量,記作a?b。若a、b不
共線,則a?b=|a|?|b|?cos〈a,b〉;若a、b共線,則a?b=+-∣a∣∣b∣。
向量的數(shù)量積的坐標表示:a?b=x?x'+y?y'。
向量的數(shù)量積的運算律
a?b=b?a(交換律);
(λa)?b=λ(a?b)(關(guān)于數(shù)乘法的結(jié)合律);
(a+b)?c=a?c+b?c(分配律);
向量的數(shù)量積的性質(zhì)
a?a=|a|的平方。
a⊥b〈=〉a?b=0。
|a?b|≤|a|?|b|。
向量的數(shù)量積與實數(shù)運算的主要不同點
1、向量的數(shù)量積不滿足結(jié)合律,即:(a?b)?c≠a?(b?c);例如:
(a?b)^2≠a^2?b^2。
2、向量的數(shù)量積不滿足消去律,即:由a?b=a?c(a≠0),推不出b=c。
3、|a?b|≠|(zhì)a|?|b|
4、由|a|=|b|,推不出a=b或a=-b。
2、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、
b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:
垂直于a和b,且a、b和a×b按這個次序構(gòu)成右手系。若a、b共線,則a×b=0。
向量的向量積性質(zhì):
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量沒有除法,“向量AB/向量CD”是沒有意義的。
3、向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
①當且僅當a、b反向時,左邊取等號;
②當且僅當a、b同向時,右邊取等號。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
①當且僅當a、b同向時,左邊取等號;
②當且僅當a、b反向時,右邊取等號。
4、定比分點
定比分點公式(向量P1P=λ?向量PP2)
設(shè)P1、P2是直線上的兩點,P是l上不同于P1、P2的任意一點。則存在一個
實數(shù)λ,使向量P1P=λ?向量PP2,λ叫做點P分有向線段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),則有
OP=(OP1+λOP2)(1+λ);(定比分點向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分點坐標公式)
我們把上面的式子叫做有向線段P1P2的定比分點公式
5、三點共線定理
若OC=λOA+μOB,且λ+μ=1,則A、B、C三點共線
三角形重心判斷式
在△ABC中,若GA+GB+GC=O,則G為△ABC的重心
向量共線的重要條件
若b≠0,則a
本文發(fā)布于:2023-03-13 19:06:20,感謝您對本站的認可!
本文鏈接:http://m.newhan.cn/zhishi/a/1678705581141162.html
版權(quán)聲明:本站內(nèi)容均來自互聯(lián)網(wǎng),僅供演示用,請勿用于商業(yè)和其他非法用途。如果侵犯了您的權(quán)益請與我們聯(lián)系,我們將在24小時內(nèi)刪除。
本文word下載地址:平面向量的所有公式.doc
本文 PDF 下載地址:平面向量的所有公式.pdf
| 留言與評論(共有 0 條評論) |