
加法運算律
教學目標
1、使學生經歷觀察、猜想、驗證、結論的探索加法運算律的過程,理解并掌
握加法的交換律和結合律,并初步感知加法運算律的價值,發展應用意識。
2、使學生在學習用符號、字母表示自己發現的運算律的過程中,初步發展符
號感,初步培養歸納、推理的能力,逐步提高抽象思維的水平。
3、使學生在數學活動中獲得成功的體驗,進一步增強對數學學習的興趣和信
心,初步形成探究問題的意識和習慣。
教學重點:
用觀察、猜想、驗證的方法探索加法交換律和結合律,能正確地用字母來表
示。
教學難點:用語言表述加法結合律和加法交換律。教學準備:多媒體課件教學
過程
一、創設情境,引入新課
通過兩組比賽題目,感知交換兩個加數的位置,和不變。
第一組:8+527+35549+1271700+120
9+820+50300+4001400+200
第二組:12+25500+30030+201200+650
25+12300+50020+30650+1200
像這樣的例子在我們的生活中還有很多,其實這里面還隱藏著數學知識,學完
這節課相信你就會知道了。
二、探究加法運算律
(一)探究加法交換律
1、觀察第二組算式,說說你有什么發現?(它們有什么相同點,又有什么不同點?
可以用什么符號連接這兩個算式?)
學生讀算式并觀察思考。
小結:(1)每組算式中都有兩個加數,而且兩個加數相同,只是交換了位置。
(2)每組算式中兩個加數的和相等。
得出:兩個數相加,交換了位置,和不變。
2、拋出問題,得出猜想。
(1)教師問:是不是任意兩個加數,交換了位置,和都不變呢?
(2)小結:看來經過一個算式得到的結論,只能是一個猜想,要驗證這個猜想,就
要舉更多的例子。
3、驗證猜想,體會方法。
(1)同桌兩人合作,選好兩個數,比如一人算6+8,另一人算8+6,比比結果,如果
相同就可以寫出一個等式,坐在左邊的同學負責記下這個等式。
一些特殊的數(如0、1)等等呢?是不是也存在這個規律呢?
(2)學生匯報,教師板書。
教師小結:照這樣下去,能寫完嗎?加省略號。這些例子都在說明“交換兩個加
數的位置,和不變”是正確的。(3)那你能不能舉出“交換兩個加數的位置和不相
等”的情況呢?
4、結論
如果請用自己喜歡的方式把你的發現表示出來會嗎?
集體交流(展示熱身音樂 各種表示方法,交流想法)
小結:兩個數相加,交換加數的位置,它們的和不變,這就是我們得出的結論(板
書:結論)——加法交換律,通常我們用字母表示為:a+b=b+a。a、b在這里表示兩個
加數。(板書:加法交換律及字母公式)
5、反思
在這一規律中,變化的什么?(兩個加數的位置)不變的是什么?(兩個加數的和)
6、總結:
剛才我們從幾個具體例子的觀察中自由泳的動作要領 發現了規律,隨后又通過舉例進行了驗證,
最后得出了結論,這是我們學習數學常用的方法。
下面我們繼續用這種方法來探究加法運算中其它的規律。
(二)探究加法結合律
1、出示情境圖,提出問題
根據提供的信息你會求“三個年級一共有多少人嗎?”
(生交流不同的算法并口算出結果)
板書算式并計算出結果
因為這兩個算式的結果相等,所以我們也可以寫成這樣的等式。
板書:153+315+85=153+(315+85)
2、算一算○里能填上等號嗎?
(45+25)+13○45+(25+13)
(36+18)+22○36+(18+22)
學生分組計算并交流
3、觀察比較,初步感知
仔細觀察黃沙百戰 每組左右兩邊的算式,它們有什么相同點?又有什么不同點?
小結:(1)每組左右兩個算式中的加數是相同的,并且加數的位置也是相同的;
(2)每組左右兩邊加數的和是相同的;
(3)小括號添加的位置不同,也就是運算順序不同。
4、引導驗證
你會照樣子再寫兩個這樣的等式嗎?
學生交流,教師板書
5、結論
你會用符號把你的發現表示出來嗎?
集體交流(展示各種表示方法,交流想法)
小結:三個數連加,我們可以先把前兩個數相加,再把它和第三個數相加,或者
也可以先把后兩個數相加,再和第一數相加,和不變。這就是加法結合律。
用字母表示為:(a+b)+c=a+(b+c)(板書:加法結合律及字母公式)
a、b、c在這里可以代表什么數?(a+b)+c表示什么?a+(b+c)表示什么?
6、反思
在這一規律中變化的是什么?(運算順序)不變的是什么?(加數的位置與和)
(三)、比較兩個運算律
剛才我們一起研究了加法中的兩個運算規律,加法交換律和加孕期性欲強 法結合律,
這是我們運算律(出示課題:運算律)大家族中的兩個部分,比較一下這兩個運
算規律,它們有什么區別?
小結:加法交換律變化的是加數的位置,而加法結合律在不改變加數位置的前
提下變化的是運算的順序。
三、鞏固練習
1、下面的等式各應用了什么運算律?
(1)47+(30+8)=(47+30)+8
(2)82+0=0+82
(3)(84+68)+32=84+(68+32)
(4)75+(48+25)=(75+25)+48
小結:像第(2)個等式那樣,左右加數的位置發生了變化,那就說明它運用了加
法的交換律;像第(1)、(3)個等式那樣,左右加數的位置沒有發生變化,只是改變了
運算順序,那就說明它們運用了加法的結合律;如果像第(4)個等式那樣左右加數的
位置發生了變化,運算順序也發生了變化,那就說明它同時運用了加法的交換律和結
合律。
2、下面的題也運用了加法運算律,說說分別運用了什么運算90后演員 律?
(1)876驗算:150
+150+876
運用了加法()律
(2)用“湊十法”計算:7+9=(6+1)+9=6+(1+紫禁城英文 9)
運用了加法()律
(3)6+7+4=7+(6+4)=17
運用了加法()律
小結:合理運用加法運算律,可以使我們的計算既正確又簡便。
3、在□里填上合適的數,并說說這樣填的理由。
(1)96+35=35+□
(2)204+57=□+204
(3)(45+36)+64=45+(□+□)
(4)560+(140+70)=(560+□)+□
小結:看來同學們已經明確了加法交換律和加法結合律的特征了。
4、練習
第一組:先算一算,再比一比
38+76+2438+(76+24)
學生比較兩道題目的異同
哪一題計算起來簡便些?為什么?
小結:對啊,當算式中兩個加數能湊成整百或整千數時我們通常可以使用加法
運算律使計算簡便。
第二組:比比誰算得快
(88+45)+1245+(88+12)
你怎么算得這么快,說說你的奧秘好嗎?(學生交流)
小結:看來在計算中靈活地運用這些運算律可以使計算比較簡便。
五、總結拓展
今天我們一起學習了加法運算中的兩個運算,加法交換律和加法結合律,通過
學習,愿意把你的收獲與大家分享一下嗎?
在加法運算中我們探索出了這樣兩條規律,那么在其它的運算中有沒有這樣的
規律呢?感興趣的同學可以用今天所學的研究方法繼續去探究。
本文發布于:2023-03-22 01:25:02,感謝您對本站的認可!
本文鏈接:http://m.newhan.cn/zhishi/a/167941950214196.html
版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。
本文word下載地址:加法結合律教案.doc
本文 PDF 下載地址:加法結合律教案.pdf
| 留言與評論(共有 0 條評論) |