等腰三角形(isosceles?triangle),是指至少有兩邊相等的三角形,相等的兩個邊稱為這個三角形的腰。等腰三角形中,相等的兩條邊稱為這個三角形的腰,另一邊叫做底邊。兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。等腰三角形的兩個底角度數(shù)相等(簡寫成“等邊對等角”)。
中文名等腰三角形
英文名Isosceles triangle
應(yīng)用學(xué)科數(shù)學(xué)
領(lǐng)域范圍幾何
特點兩腰和兩角均相等
定義至少有兩邊相等的三角形叫做等腰三角形。等腰三角形中,相等的兩條邊稱為這個三角形的腰,另一邊叫做底邊。兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。等腰三角形中,相等的兩條邊稱為這個三角形的腰,另一邊叫做底邊。兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。等腰三角形的兩個底角度數(shù)相等(簡寫成“等邊對等角”)。
分類編輯
性質(zhì)1.等腰三角形的兩個底角度數(shù)相等(簡寫成“等邊對等角”)。
2.等腰三角形的頂角平分線,底邊上的中線,底邊上的高相互重合(簡寫成“等腰三角形三線合一”)。
3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。
4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。
5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。
6.等腰三角形底邊上任意一點到兩腰距離之和等于一腰上的高(需用等面積法證明)。
7.一般的等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸。但等邊三角形(特殊的等腰三角形)有三條對稱軸。每個角的角平分線所在的直線,三條中線所在的直線,和高所在的直線就是等邊三角形的對稱軸。
8.等腰三角形中腰長的平方等于底邊上高的平方加底的一半的平方(勾股定理)。
9.等腰三角形的腰與它的高的關(guān)系:腰大于高;腰的平方等于高的平方加底的一半的平方。
判定的方式定義法:在同一三角形中,有兩條邊相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。
除了以上兩種基本方法以外,還有如下判定的方式:
在一個三角形中,如果一個角的平分線與該角對邊上的中線重合,那么這個三角形是等腰三角形,且該角為頂角。
在一個三角形中,如果一個角的平分線與該角對邊上的高重合,那么這個三角形是等腰三角形,且該角為頂角。
在一個三角形中,如果一條邊上的中線與該邊上的高重合,那么這個三角形是等腰三角形,且該邊為底邊。顯然,以上三條定理是“三線合一”的逆定理。
有兩條角平分線(或中線,或高)相等的三角形是等腰三角形。[1]
證明有關(guān)問題的證明
已知:△ABC中,∠A=60°,且AB+AC=a,
求證:當(dāng)三角形的周長最短時,三角形是等邊三角形。
證明:AC=a-AB
根據(jù)余弦定理
BC2=AB2+BC2-2AB*BC*cosA
BC2=AB2+BC2-AB*BC=AB2+(a-AB)2-AB*(a-AB)=3AB2-3a*AB+a2=3(AB-a/2)2+a2/4
所以當(dāng)AB=a/2時,BC=a/2最小
AC=a-a/2=a/2
這時,周長為AB+AC+BC=a+BC=a+a/2=3a/2最短
AB=AC=BC=a/2
所以當(dāng)周長最短時的三角形是正三角形。
參考資料本文發(fā)布于:2023-06-01 05:04:45,感謝您對本站的認可!
本文鏈接:http://m.newhan.cn/zhishi/a/92/181683.html
版權(quán)聲明:本站內(nèi)容均來自互聯(lián)網(wǎng),僅供演示用,請勿用于商業(yè)和其他非法用途。如果侵犯了您的權(quán)益請與我們聯(lián)系,我們將在24小時內(nèi)刪除。
本文word下載地址:等腰三角形(數(shù)學(xué)領(lǐng)域術(shù)語).doc
本文 PDF 下載地址:等腰三角形(數(shù)學(xué)領(lǐng)域術(shù)語).pdf
| 留言與評論(共有 0 條評論) |