基爾霍夫電流定律也稱為節點電流定律,于1845年由德國物理學家G.R.基爾霍夫(Gustav Robert Kirchhoff,1824~1887)提出,內容是電路中任一個節點上,在任一時刻,流入節點的電流之和等于流出節點的電流之和。(又簡寫為KCL)。這是因為電容器的兩塊導板之間的空隙,會阻止分別累積于兩塊導板的異性電荷相遇,從而互相抵消。
美國伊利諾斯大學電子和計算機工程教授米爾頓·馮和小尼克·侯隆亞克等研究人員通過開發出的三端口晶體管激光器(three-port transistor lar),對基爾霍夫電流定律進行了修正?;鶢柣舴蚨砂ɑ鶢柣舴虻谝欢珊突鶢柣舴虻诙?,其中基爾霍夫第一定律即為基爾霍夫電流定律,簡稱KCL;基爾霍夫第二定律則稱為基爾霍夫電壓定律,簡稱KVL。
中文名基爾霍夫電流定律
外文名Kirhhoff's Current Law
提出者G.R.基爾霍夫
提出時間別稱基爾霍夫第一定律
應用學科物理學
適用領域范圍電路基礎
簡稱KCL
理論及計算定義基爾霍夫電流定律表明:
所有進入某節點的電流的總和等于所有離開這節點的電流的總和。
或者,更詳細描述為:
假設進入某節點的電流為正值,離開這節點的電流為負值,則所有涉及這節點的電流的代數和等于零。
以方程表達,對于電路的任意節點滿足:
其中,ik是第k 個進入或離開這節點的電流,是流過與這節點相連接的第 k 個支路的電流,可以是實數或復數。
推導由于累積的電荷(單位為庫侖)是電流(單位為安培)與時間(單位為秒)的乘積,從電荷守恒定律可以推導出這條定律。其實質是穩恒電流的連續性方程,即根據電荷守恒定律,流向節點的電流之和等于流出節點的電流之和。
思考電路的某節點,跟這節點相連接有 n 個支路。假設進入這節點的電流為正值,離開這節點的電流為負值,則經過這節點的總電流i等于流過支路 k 的電流ik的代數和:
將這方程積分于時間,可以得到累積于這節點的電荷的方程:其中,是累積于這節點的總電荷,是流過支路 k的電荷,t 是檢驗時間,t是積分時間變量。假設q>0,則正電荷會累積于節點;否則,負電荷會累積于節點。根據電荷守恒定律,q 是個常數,不能夠隨著時間演進而改變。由于這節點是個導體,不能儲存任何電荷。所以,q=0 、i=0 ,基爾霍夫電流定律成立:
含時電荷密度從上述推導可以看到,只有當電荷量為常數時,基爾霍夫電流定律才會成立。通常,這不是個問題,因為靜電力相斥作用,會阻止任何正電荷或負電荷隨時間演進而累積于節點,大多時候,節點的凈電荷是零。
不過,電容器的兩塊導板可能會允許正電荷或負電荷的累積。這是因為電容器的兩塊導板之間的空隙,會阻止分別累積于兩塊導板的異性電荷相遇,從而互相抵消。對于這狀況,流向其中任何一塊導板的電流總和等于電荷累積的速率,而不是零。但是,若將位移電流納入考慮,則基爾霍夫電流定律依然有效。只有當應用基爾霍夫電流定律于電容器內部的導板時,才需要這樣思考。若應用于電路分析(circuit analysis)時,電容器可以視為一個整體元件,凈電荷是零,所以原先的電流定律仍適用。
由更技術性的層面來說,取散度于麥克斯韋修正的安培定律,然后與高斯定律相結合,即可得到基爾霍夫電流定律:其中,J 是電流密度,是電常數,E是電場,ρ是電荷密度。這是電荷守恒的微分方程。以積分的形式表述,從封閉表面流出的電流等于在這封閉表面內部的電荷Q的流失率:基爾霍夫電流定律等價于電流的散度是零的論述。對于不含時電荷密度,該定律成立。對于含時電荷密度,則必需將位移電流納入考慮。
適用范圍基爾霍夫定律建立在電荷守恒定律、歐姆定律及電壓環路定理的基礎之上,在穩恒電流條件下嚴格成立。當基爾霍夫第一、第二方程組聯合使用時,可正確迅速地計算出電路中各支路的電流值。由于似穩電流(低頻交流電)具有的電磁波長遠大于電路的尺度,所以它在電路中每一瞬間的電流與電壓均能在足夠好的程度上滿足基爾霍夫定律。因此,基爾霍夫定律的應用范圍亦可擴展到交流電路之中。
科學家修正后雖然物理定律不是隨便就可以推翻的,但是它們有時也需要修正。美國伊利諾斯大學電子和計算機工程教授米爾頓·馮和小尼克·侯隆亞克等研究人員通過開發出的三端口晶體管激光器(three-port transistor lar),對基爾霍夫電流定律進行了修正。
伊利諾斯大學研究人員通過使用量子阱修改基區和諧振器的外形,把晶體管的工作方式由自發發射轉變為受激發射。晶體管復合工藝的改變使器件特性發生了變化,使其具有一種基本的、潛在的接近激光器閾值的可用的非線性特性。三端口晶體管激光器通過把電輸入信號轉變為兩個輸出信號——一個電信號和一個光信號,從而提供了新的信號混合和開關能力,把晶體管和激光器的功能結合了起來。
但是,新增加的光輸出第三端口帶來了意想不到的難題,即在兩種能量輸出形式并存的情況下如何運用電荷守恒定律和能量守恒定律。馮教授表示:“我們對此感到困惑。它是如何工作的?它是否違背了基爾霍夫定律?定律又如何適用于光子或光信號輸出的?”
侯隆亞克教授說:“光信號與電信號相連和相關,但在晶體管激光器中光信號和電信號的關系則被解除?;鶢柣舴蚨烧疹櫟搅穗姾善胶?,卻沒有照顧到能量平衡。由此帶來的問題是,如何將該定律適用于所有情況,并以電路的語言將其表達出來。”
最終,三端口晶體管激光器所表現的特性促使研究人員對基爾霍夫定律進行了再檢驗和修正,以使其能適用于解釋電子和光子,從而有效地將電流定律擴展為電流—能量定律。在2010年5月10日的《應用物理雜志》網絡版上,研究人員發表了有關的模型和支持數據。馮教授表示,過去的定律僅與從給定節點流出的電子相關,從不涉及能量守恒的問題。他說:“這是我們首次看到能量是如何參與到守恒過程中的?!?/p>
基于修正定律的計算機模型與從三端口晶體管激光器收集的數據相符,可非常精確地預測出集成電路的頻寬、速度和其他特性。通過研究三端口晶體管激光器中電子、光子和半導體的行為,研究人員將可開發出該器件在高速信號處理、集成電路、光通信及超級計算中的多種應用。
參考資料本文發布于:2023-06-05 09:03:42,感謝您對本站的認可!
本文鏈接:http://m.newhan.cn/zhishi/a/92/204585.html
版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。
本文word下載地址:基爾霍夫電流定律(物理學定理).doc
本文 PDF 下載地址:基爾霍夫電流定律(物理學定理).pdf
| 留言與評論(共有 0 條評論) |