階乘如何計算?
你好
階乘(factorial)是基斯頓·卡曼(Christian Kramp, 1760 – 1826)于1808年發明的運算符號。
階乘,也是數學里的一種術語。
[編輯本段]【階乘的計算方法】
階乘指從1乘以2乘以3乘以4一直乘到所要求的數。
例如所要求的數是4,則階乘式是1×2×3×4,得到的積是24,24就是4的階乘。 例如所要求的數是6,則階乘式是1×2×3×……×6,得到的積是720,720就是6的階乘。例如所要求的數是n,則階乘式是1×2×3×……×n,設得到的積是x,x就是n的階乘。
[編輯本段]【階乘的表示方法】
在表達階乘時,就使用“!”來表示。如x的階乘,就表示為x!
如:n!=n×(n-1)×(n-2)×(n-3)×...×1
階乘的另一種表示方法:(2n-1)!!
當n=2時,3!!=3×1=3
當n=3時,5!!=5×3×1=15
當n=4時,7!!=7×5×3×1=105
...(以此類推)
[編輯本段]【20以內的數的階乘】
以下列出0至20的階乘:
0!=1,
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5040,
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600
13!=6227020800
14!=87178291200
15!=1307674368000
16!=20922789888000
17!=355687428096000
18!=6402373705728000
19!=121645100408832000
20!=2432902008176640000
另外,數學家定義,0!=1,所以0!=1!
[編輯本段]【階乘的定義范圍】
通常我們所說的階乘是定義在自然數范圍里的,小數沒有階乘,像0.5!,0.65!,0.777!都是錯誤的。但是,有時候我們會將Gamma函數定義為非整數的階乘,因為當x是正整數n的時候
階乘的計算方法
n!=1×2×3×...×n。階乘亦可以遞歸方式定義:0!=1,n!=(n-1)!×n。
亦即n!=1×2×3×...×n。階乘亦可以遞歸方式定義:0!=1,n!=(n-1)!×n。
擴展資料
雙階乘用“m!!”表示。
當 m 是自然數時,表示不超過 m 且與 m 有相同奇偶性的所有正整數的乘積。如:
當 m 是負奇數時,表示絕對值小于它的絕對值的所有負奇數的絕對值積的倒數。
當 m 是負偶數時,m!!不存在。
任何大于等于1 的自然數n 階乘表示方法:
資料來源:階乘_百度百科
階乘怎么算?
5的階乘就是5×4×3×2×1。
階乘(一個數n的階乘寫成n!)的算法:
n!=1×2×3×...×(n-1)×n。
定義:0!=1,n!=(n-1)!×n
擴展資料:
真正嚴謹的階乘定義應該為:對于數n,所有絕對值小于或等于n的同余數之積。稱之為n的階乘,即n!
對于復數應該是指所有模n小于或等于│n│的同余數之積。。。對于任意實數n的規范表達式為:
正數 n=m+x,m為其正數部,x為其小數部
負數n=-m-x,-m為其正數部,-x為其小數部
對于純復數
n=(m+x)i,或n=-(m+x)i
階乘的公式是什么
公式:n!=n*(n-1)!
階乘的計算方法
階乘指從1乘以2乘以3乘以4一直乘到所要求的數。
例如所要求的數是4,則階乘式是1×2×3×4,得到的積是24,24就是4的階乘。
例如所要求的數是6,則階乘式是1×2×3×..×6,得到的積是720,720就是6的階乘。例如所要求的數是n,則階乘式是1×2×3×…×n,設得到的積是x,x就是n的階乘。
階乘的表示方法
在表達階乘時,就使用“!”來表示。如x的階乘,就表示為x!
他的原理就是反推,如,舉例,求10的階乘=10*9的階乘(以后用!表示階乘)那么9!=?,9!=9*8!,8!=8*7!,7!=7*6!,6!=6*5!,5!=5*4!,4!=4*3!,
3!=3*2!,2!=2*1!,1的階乘是多少呢?是1
1!=1*1,數學家規定,0!=1,所以0!=1!然后在往前推算,公式為n!(n!為當前數所求的階乘)=n(當前數)*(n-1)!(比他少一的一個數n-1的階乘把公式列出來像后推,只有1的!為1,所以要從1開始,要知道3!要知道2!就要知道1!但必須從1!開始推算所以要像后推,如果遍程序算法可以此公式用一個函數解決,并且嵌套調用次函數,,)把數帶入公式為,
1!=1*1
2!=2*1(1!)
3!=3*2(2!)
4=4*6(3!),如果要是編程,怎么解決公式問題呢
首先定義算法
//算法,1,定義函數,求階乘,定義函數fun,參數值n,(#include
long
fun(int
n
)
//long
為長整型,因20!就很大了超過了兆億
(數學家定義數學家定義,0!=1,所以0!=1!,0與1的階乘沒有實際意義)
2,函數體判斷,如果這個數大于1,則執行if(n>1)(往回退算,這個數是10求它!,要從2的階乘值開始,所以執行公式的次數定義為9,特別需要注意的是此處,當前第一次寫入代碼執行,已經算一次)
求這個數的n階乘(公式為,n!=n*(n-1)!,并且反回一個值,
return
(n*(fun(n-1));(這個公式為,首先這個公式求的是10的階乘,但是求10的階乘就需要,9的階乘,9的階乘我們不知道,所以就把10減1,也就是n-1做為一個新的階乘,從新調用fun函數,求它的階乘然后在把這個值返回到
fun(n-1),然后執行n*它返回的值,其實這個公式就是調用fun函數的結果,函數值為return
返回的值,(n-1)為參數依次類推,...一值嵌套調用fun函數,
到把n-1的值=1,
注意:此時已經運行9次fun()函數算第一次運行,,調用幾次fun函數呢?8次函數,所以,n-1執行了9次,n-1=1
,n=2已經調用就可以求2乘階值