
1.1.1集合的概念教案
教學目標:(1)使學生初步理解集合的概念,知道常用數集的概念及其記法
(2)使學生初加法速算 步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
教學重點:集合的基本概念
教學過程:
1.引入
(1)章頭導言
(2)集合論與集合論的創始者-----康托爾(有青梅果的功效與作用 關介紹可引用附錄中的內容)
2.講授新課
閱讀教材,并思考下列問題:
(1)有那些概念?
(2)有那些符號?
(3)集合中元素的特性是什么?
(4)如何給集合分類?
(一)有關概念:
1、集合的概念
(1)對象:我們可以感覺到朱真芳 的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對
象.
(2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全
體構成的集合.
(3)元素:集合中每個對象叫做這個集合的元素.
集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、
b、c、??
2、元素與集合的關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
要注意“∈”的方向,不能把a∈A顛倒過來寫.
3、集合中元素的特性
(1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.
(2)互異性:集合中的元素一定是不同的.
(3)無序性:集合中的元素沒有固定的順序.
4、集合分類
根據集合所含元素北京的文化 個屬不同,可把集合分為如下幾類:
(1)把不含任何元素的集合叫做空集
(2)含有去屑止癢 有限個元素的集合叫做有限集
(3)含有無窮啟功字畫 個元素的集合叫做無限集
注:應區分,,,0等符號的含義
5、常用數集及其表示方法
(1)非負整數集(自然數集):全體非負整數的集合.記作N
(2)正整數集:非負整數集內排除0的集.記作N*或N+
(3)整數集:全體整數的學生綜合素質 集合.記作Z
(4)有理數集:全體有理數的集合.記作Q
(5)實數集:全體實數的集合.記作R
注:(1)自然數集包括數0.
(2)非負整天將降 數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排除0的集,
也這樣表示,例如,整數集內排除0的集,表示成Z*
課堂練習:教材第5頁練習A、B
小結:本節課我們了解集合論的發展,學習了集合的概念及有關性質
課后作業:第十頁習題1-1B第3題
新課標第一網
本文發布于:2023-03-20 12:25:17,感謝您對本站的認可!
本文鏈接:http://m.newhan.cn/zhishi/a/167928631739010.html
版權聲明:本站內容均來自互聯網,僅供演示用,請勿用于商業和其他非法用途。如果侵犯了您的權益請與我們聯系,我們將在24小時內刪除。
本文word下載地址:集合教案.doc
本文 PDF 下載地址:集合教案.pdf
| 留言與評論(共有 0 條評論) |